
AFRL-IF-RS-TR-2002-166
Final Technical Report
July 2002

^£T^ . x®. -K,g

SECURITY ENGINEERING FOR HIGH
ASSURANCE, POLICY-BASED APPLICATIONS

Odyssey Research Associates

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. E298

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

20021008 210

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2002-166 has been reviewed and is approved for publication.

APPROVED: JOHN C.FAUST
Project Engineer

FOR THE DIRECTOR: WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/JEGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection ol information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information^ Send comments regarding this burden estimate or an» other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington DC 20503

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

Jul02
3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

SECURITY ENGINEERING FOR HIGH ASSURANCE, POLICY-BASED
APPLICATIONS

Final Sep 96 - Sep 99

6. AUTHOR(S)

David Rosenthal, Francis Fung, Stephen Garland, Andrew Myers and David Evans

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Odyssey Research Associates
Cornell Business & Technology Park
33 Thornwood Drive, Suite 500
Ithaca, NY 14850-1250

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

AFRL/IFGB
525 Brooks Road
Rome, NY 13441-4505

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: John C. Faust, IFGB, 315-330-4544

5. FUNDING NUMBERS

C - F30602-96-C-0303
PE -62301E
PR -E017
TA -01
WU -08

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-166

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words!

This report describes a research effort to define methods of analysis, components, and tools for handling information in an
environment with complex trust and security relationships. The effort consists of two related tasks. The firsfoask is to
provide proper access control for data that is shared by multiple organizations in a networked environment. In particular,
we describe an access control mechanism that factors security administration among different administrative entities. The
access control language is object-oriented and facilitates the construction of default policies for newly created objects. The
second task is to provide methods for describing and achieving the proper behavior of programs that may be executed in
accessing shared data. In particular, we have designed three ways in which to express aspects of proper program behavior,
developed program checking strategies for all three, and produced languages and checking tools for two of them. 1) PolyJ
is a tool-supported extension to Java that provides improved compile-time assurance for the correctness of Java programs.
2)IFlow is a language and static checking strategy for describing and controlling information flow. 3) Naccio is a
tool-supported code-transformation system for ensuring that executable mobile code adheres to user-defined security
policies.

14. SUBJECT TERMS ~ ~

Information Assurance, Access Control Program Behavior, Java, Program Correctness,
Information Flow, Safety Property Enforcement, Mobile Code Security, Security Policy
Specification Languages
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

96
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 IRev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Abstract

This report describes a research effort of ORA and MIT to define methods of analysis,
components, and tools for handling information in an environment with complex trust
and security relationships. The effort consists of two related tasks.

The first task is to provide proper access control for data that is shared by multiple
organizations in a networked environment. In particular, we describe an access control
mechanism that factors security administration among different administrative entities.
The access control language is object-oriented and facilitates the construction of default
policies for newly created objects. We provide a description of the specification
language and a high-level description of a demonstration implementation for web-based
information sharing.

The second task is to provide methods for describing and achieving the proper behavior
of programs that may be executed in accessing shared data. In particular, we have
designed three ways in which to express aspects of proper program behavior, developed
program checking strategies for all three, and produced languages and checking tools for
two of them. (1) PolyJ is a tool-supported extension to Java that provides improved
compile-time assurance for the correctness of Java programs. In particular, PolyJ uses
static checking of parameterized data types to detect errors that would otherwise cause
Java programs to fail during execution. (2) IFlow is a language and static checking
strategy for describing and controlling information flow. It complements access control
mechanisms by allowing different administrative entities to limit the dissemination of
information to which they have granted access. (3) Naccio is a tool-supported code-
transformation system for ensuring that executable mobile code adheres to user-defined
security policies.

Table of Contents

Abstract i
List of Figures vi
Summary 1
PART I: Introduction 3

1 Introduction 3
1.1 Scope and Objective 3
1.2 Report Description 3

PART II: Access Control 4
2 Access Control Approach 4

2.1 Concept 4
2.2 Access Control Policy 5
2.3 Example 5
2.4 Target Objects 6
2.5 Demonstration System 6

2.5.1 The handling of a request 6
2.5.2 Policies 7
2.5.3 Certificates 8

2.6 Adage 8
2.7 What Follows 8

3 Expression Language 8
3.1 OCL Language 9
3.2 OCL Comments 9
3.3 Types and Values 10

3.3.1 Basic values and types 10
3.3.2 Classes 10
3.3.3 Enumerated types 11
3.3.4 The Let construct 11

3.4 Collections 11
3.4.1 Sets, bags, and sequences 11
3.4.2 Select, reject, and collect 12
3.4.3 Additional collection operations 13

3.5 Object Properties 14
3.5.1 Object attributes 14
3.5.2 Object operations 14
3.5.3 Object association ends 15
3.5.4 Navigation to and from association classes 15

3.6 Casting and Conformance 16
3.7 Operator Precedence 16
3.8 Packages 17
3.9 Type Features 17
3.10 Quantifiers 17
3.11 Iterate 18

3.12 The @ Operator 18
3.13 Context 18
3.14 Grammar as in OCL manual 19
3.15 Constants 20
3.16 Language Extensions 20

3.16.1 Set operations 20
3.16.2 Names of users and files 21
3.16.3 Interpretation of expressions involving relationships 22
3.16.4 Comparison operations 22
3.16.5 Enumerated values 23
3.16.6 Extension for collection type formation 23

3.17 Implementation Issues 23
3.17.1 Class definitions 23
3.17.2 Language constructs 24

3.18 Language and Meta-Language 24
3.19 What follows "!!!.".'"!"!""!"! 25
Classes, Relationships, and Attributes 25
4.1 Object Model Declarations 25

4.1.1 Class statements 25
4.1.2 Object declarations and default objects. 29
4.1.3 Relation statements 30
4.1.4 Dynamic attribute declarations 32
4.1.5 Aliases 33
4.1.6 Simple examples of classes and relations 34

4.2 Context 34
Policies 34
5.1 Combining Policies 35
5.2 Control and Modification of Policies 35
5.3 Local and Inheritable Policies 36
5.4 Ease of Use 35
5.5 Policies on Policy Data 37
5.6 Policy Syntax 37

5.6.1 Trust policies ...37
5.6.2 Access policies 38
5.6.3 Default policies 38
5.6.4 Special circumstances 40

5.7 Access Rules 41
5.8 Trust Rules 42
5.9 Audit and Failure Response Rules 43
5.10 Policy Properties 44
5.11 Optimizations. 44
System Classes 44
6.1 Actors 45

6.1.1 Handling multiple identity certificates 46
6.1.2 Default values... 46
6.1.3 Sample actor class 46

111

6.1.4 Delegation 46
6.2 Targets 46
6.3 Actions 47
6.4 Requests 47
6.5 Security Class 48
6.6 Referring to the Objects of the Access Control System 49
6.7 External representations 49

7 Example 49
7.1 Informal Explanation 49
7.2 Specification 50

8 Description of Demonstration Software 54
8.1 Overview 55
8.2 Client GUI web pages 56

8.2.1 Reading, writing, and creating files 56
8.2.2 Viewing and modifying rules on a target 56
8.2.3 Viewing and modifying relationships 56

PART III: Java Enhancements and Tools 57
9 PolyJ 57

9.1 Illustration of Unreliability in Java 58
9.2 Improved Reliability in PolyJ 59
9.3 Implementation Strategy 60
9.4 Comparison with Other Approaches 61

10 Enhanced javadoc Utility 61

PART IV: Enforcing Safety Properties 63
11 Enforcing Safety Properties 63

11.1 Overview of Naccio 64
11.2 Describing Resources 66
11.3 Expressing Safety Policies 67
11.4 Describing Platform Interfaces 69

PART V: Information Flow 71
12 Information Flow 71

PART VI: Conclusions and Recommendations 73
13 Results 73

13.1 Access Control 73
13.1.1 Current Results 73
13.1.2 Future Directions 74

13.2 Java Tools - PolyJ 74
13.2.1 Current Results 74
13.2.2 Future Directions 74

13.3 Java Tools-Enhanced javadoc Utility 75
13.3.1 Current Results 75
13.3.2 Future Directions 75

13.4 Enforcing Safety Properties 75
13.4.1 Current Results 75
13.4.2 Future Directions 76

13.5 Information Flow 78

IV

13.5.1 Current Work 78
13.5.2 Future Directions 78

14 Technology Transfer Recommendations 79
References 80

List of Figures

Figure 1: Components of Information Sharing Application 55
Figure 2: Naccio Architecture 65

VI

Summary
This report describes the final results of work done by ORA and MIT to define methods
of analysis, components, and tools for handling information in an environment with
complex trust and security relationships. The effort consists of two related tasks, access
control and program behavior.

Access Control

In order for access control methods to be effective, the access constraints on a resource
need to reflect the intended policy. Unfortunately, typical users do not usually take the
time to set up access constraints. This problem can be mitigated to some extent by the
use of mandatory system level policies and default policies on newly created resources.
However, the flexibility of such policies is usually limited, and so the constraints
imposed are often not a good fit with user needs.

We have developed a language in which users can naturally specify default access
constraints with great flexibility and precision. The highlights of this language are:

• It is object oriented, facilitating a natural representation of entities such as users and
resources. The language is based on UML/OCL (Unified Modeling Language/Object
Constraint Language), which is achieving wide acceptance as a standard for object
modeling.

• The language includes constructs to express both attributes of users and resources,
and relationships between them. Relationships can provide a generalization of the
familiar group concept in access control. UML/OCL provides the required
expressive power and is particularly appropriate for expressing access constraints
involving relationships between entities, such as:

> an organizational hierarchy, or
> a connection between current projects and members of an organization.

• Relationships and (dynamic) attributes can be defined by separate administrative
authorities by means of certificates. This permits an appropriate partition of
administrative responsibilities.

The language for describing access rules involves more than just expressing the terms to
be evaluated. It is supplemented with declarations of the classes, attributes, and
relationships that appear in the expressions, in order for users to properly interpret the
meanings of the rules.

When multiple users or organizations share resources, multiple policies may apply. For
example, one organization may control a directory of a file system hierarchy, while an
independent organization controls a subdirectory; each organization needs some control

over access to files of the subdirectory. The language contains constructs to control how
the policies of different authorities are combined.

In order to demonstrate the usefulness of the approach, we have created a demonstration
system that implements access control for a web-based information sharing system. We
have used the demonstration system to study issues of expressiveness (does the language
provide the expressiveness that users require in complex environments) and usability (is
the language simple enough for ordinary users).

Program Behavior

Our work on assessing program behavior has three components:

• Languages in which to express security policies or desired behaviors.

• Static analysis tools (similar to the LCLint tool [Evans96] developed earlier at MIT)
that use "light weight formal methods" to check whether code obeys the security
policies and exhibits the desired behaviors.

• Run-time support for enforcing the security policies.

We have used this three-pronged approach to address issues concerning the reliability and
safety of mobile code, as well as the flow of information from modules that have
acquired access to that information via access-control mechanisms.

We have developed several means for increasing the reliability of applications written in
Java. One enables better compile-time detection of programming errors. It provides an
extended version of Java, called PolyJ, for use by programmers to describe the intended
use of parameterized types and for use by static checking tools to ensure that these types
are used as intended. The second provides support for improving the accuracy and utility
of the documentation. Like the Sun javadoc utility, it extracts documentation from
comments embedded in Java source code; unlike javadoc, it checks that the comments
bear some relation to the source code.

In order to ensure the safety of mobile code, we have designed and developed tools that
transform an arbitrary program into a trusted program that satisfies user-specified safety
properties. Typical properties might restrict the files that mobile code can read or write,
or limit how mobile code uses system resources. Supporting tools can be used to enforce
these properties for downloaded Java classes or for Windows executables.

We have developed a new model, IFlow, of information flow that supports fine-grained,
user controlled, dynamically changing releasability and downgrading constraints on data.
This model encompasses multiple trust domains, an explicit fine-grained downgrading
policy, and low enforcement overhead, most of which is incurred by static checking at
compile time rather than by expensive run-time monitoring of program execution.

PARTI: Introduction

1 Introduction

1.1 Scope and Objective

This report describes work performed at ORA and MIT to define methods of analysis,
components, and tools for handling information in an environment with complex trust
and security relationships. The scope of the effort is to:

• Provide proper protection for data that is shared by multiple organizations in a
networked environment.

• Assess and achieve the proper behavior of programs that may be executed in the
course of accessing the data.

For access control, our objective is to provide a means to precisely establish and enforce
a security policy, in a way that minimizes the burden on the end-user. We present a
method to achieve this objective by providing an expressive access control language that
can be used to specify the initial policy on newly created objects.

For proper program behavior, our objectives are to provide improved support for assuring
the correctness of Java programs, to enforce appropriate information flow (including
appropriate downgrading), and to ensure that mobile code respects user-defined safety
policies.

1.2 Report Description

The remainder of this report consists of the following parts:

■ Part II describes the access control method with particular attention to the access
control language.

■ Part III describes language extensions and tools used to provide better compile-time
checking that Java programs behave as expected.

■ Part rV describes the mechanisms used to enforce the adherence of mobile code to
user-defined safety properties.

■ Part V describes the information flow model and the methods that can be used to
check statically that code respects information flow policies.

■ Part VI summarizes our results.

PART II: Access Control

2 Access Control Approach

2.1 Concept

The intent of this part of the project is to provide security support for information sharing
between organizations. Different organizations (and suborganizations) may want to
impose different kinds of restrictions on how data can be accessed. This is usually
accomplished by some form of configurable access control on data. In the situation we
are examining, we would like to support fine-grained policies. There have been many
approaches to support fine-grained access control for information sharing. One of the
most common approaches involves the use of some kind of access control list. However,
a problem with this approach is that users typically do not bother to use it. For fine-
grained policy methods to work effectively, there needs to be a mechanism to set the
correct policies with minimal end user intervention.

If the information sharing application were totally within a single organization and the
policy principles were relatively stable, one could hard-wire the access control support
into an application and administer it centrally. Here we examine a situation in which
different organizations may want to control and configure their policies. Hence, we want
a more flexible way to define a policy than using built-in programs that enforce the
policy. We also want to allow organizations to have more direct control over assigning
the user characteristics upon which access decisions will be based.

To achieve the needed flexibility, we have developed a policy language for access rules
that is sufficiently general to utilize user and object characteristics. This general idea is
similar to other current approaches, such as Adage [ZBCS97]. In the approach presented
here, the developers of the information sharing application specify a fuller object model
(including relationships as well as attributes), and the application users can utilize a more
expressive access constraint language than in Adage. Access rules are specified using the
vocabulary of the object model. This provides an expressive and adaptable way to
describe constraints. For example, an access rule can require that a user or file has a
particular kind of security level attribute or that a user has a relationship indicating that
they work for another user.

Relationships can be used to support a generalization of groups, called "parameterized
groups". For instance, to represent the parameterized group "reportstoA", which
describes collections of users to whom a certain user A reports, we can use the
relationship "A reportsto B". This construction permits users to compactly state rules
that apply uniformly to many different objects and users. Other examples of
parameterized groups are:

■ users working on a certain project
■ users permitted to handle a certain kind of data

In order to minimize the user burden in setting access controls, we provide a means of
automatically setting default access policies on newly created objects. Since we can
define access rules in terms of user relationships and attributes, we have greater
capability to write rales that will form the correct policy on many different objects. We
recognize that even if most users may not bother to properly set access controls, some
users may want to alter a part of the policy that gets set by default. We provide two
different ways of handling this. Users can build rules using the general access control
language. A simpler method, a generalization of access control lists, is also available.

Another goal is to minimize the amount of administrative interaction between the
cooperating organizations and the centralized information server. Organizations may use
relationships to specify subsets of their users without having to directly interact with an
information server administrator. For example, the structure of users within a
participating organization can remain that organization's responsibility. This potentially
remote specification of users and their relationships can be implemented in a secure way
by using certificates. Certificates for user characteristics can be issued by certificate
authorities (CA's) that are not directly associated with the authority managing the shared
information.

A potential disadvantage of our approach is that the generality provided by the access
language may make it harder to optimize access rale evaluation. However, this method is
being proposed for information sharing between organizations, and so the number of
access requests should be small enough that small delays in rule evaluation will not have
a significant impact.

Another concern is that the generality of the rales may make them too difficult for users
to understand. We anticipate that implementers of this access control mechanism may
want to build specialized front-end languages to our language that are more limited and
focused. We describe an example of a front-end language based on the concept of an
access control list.

2.2 Access Control Policy

When the resources being managed have a natural hierarchy, such as a file system, it is
possible to impose a layered access policy. A top-level policy can specify the part of the
access control policy (a "base policy") that applies to every resource object. In this way,
all users of the application are subject to a set of rules that are enforced on all resources.
At another layer down, organizations can specify part of the policy on those objects that
they "control". Lower layers can impose further restrictions depending on how that
particular part should be controlled.

2.3 Example

To motivate the usefulness of our access control method we provide a simple example
with part of a specification for it. Later, in Section 7, we discuss a more complete
example with a fuller specification, including declarations for the classes of objects
involved in the object model.

Suppose the Air Force Research Laboratory (AFRL) wants to set up a directory so that
researchers at several different sites can share information. Each research site will have
its own subdirectory, and should have some control on who can access information in
that subdirectory. This includes defining which members of their own organization can
use their subdirectory.

An informal explanation of some of the rules is as follows:

AFRL maintains a directory called shared_project. Each company can create a
subdirectory of shared_project, e.g., companyA. A PI (Principal Investigator) for
company A can create a subdirectory of CompanyA, say Pro j ect_Pi_A. The PI has full
rights to this project directory. The company also has the ability to establish that
someone works for the PI (via a certificate), say employee x. With these credentials, user
x has the right to create a subdirectory of the PI directory.

A rule such as:

(request.requestor=request.file.owner) or (request.operation=READ)

when associated with a file, will permit any operation by the file owner and read access
by anyone else.

The rules governing access to a given file are not necessarily controlled by just one
individual; they are a composite of the policies of the different authorities. In this
example, AFRL can form a policy that all files and subdirectories will inherit. A
company can impose additional constraints on its files, and so forth.

2.4 Target Objects

The concepts developed in this effort can apply to a variety of information sharing
systems. However, the focus of this effort is on applications that share information using
files and directories. In normal security terminology, these would be referred to as the
objects of the system. However, we will be using the object-oriented modeling
community's terminology. In such a context, the word "object" is more general, and
could even refer to parts of the system that maintain information about subjects (e.g.,
users). To avoid confusion, we follow the Adage convention and use the words target, or
target object, to refer to the application objects that are access controlled.

2.5 Demonstration System

We have implemented these concepts in a demonstration Web-based information sharing
system.

2.5.1 The handling of a request

The system distinguishes between two different kinds of requests: requests to perform
some operation such as a read or write on some target object, and requests to view or
update access control information.

To perform an operation on a target object, a user first generates a request. (In our
demonstration prototype there is a simple web-based GUI for making requests and
receiving results.) The request is sent to the "information server", i.e., the part of the
information sharing application that maintains and controls access to the data. The
information server then performs the following steps:

■ it evaluates the information in the request to see if it is "trusted"
■ it checks the access rules using information supplied by the request and additional

information maintained by the application
■ if the access checks are passed, the server invokes the requested operation on the

object (for example, a file may be updated)
■ it then sends results of the request back to the user

The second kind of request involves updating access information. When a target object is
first created, a security policy is initially assigned to that object. This includes the
policies inherited from higher parts of the hierarchy (as described below) and a copy of
the default user policy of the object creator. An object creator can update its part of the
policy.

2.5.2 Policies

One of the features of this kind of information sharing application is that multiple parties
may want to influence the allowable access to a given piece of information. First, all of
the users of the application may agree to follow a common set of rules (e.g., no outsiders
can directly gain access). Additionally, users may want additional constraints on "their"
information. Furthermore, a user might control a directory and thus may wish to impose
restrictions on files within that directory, even if those files are under another user's
control.

To accommodate this, the application supports combining multiple policies from all of
the parties that have some controlling interest on a target object. This policy structure
can be thought of as being associated with the directory structure of the target objects.
Inheritable policies apply to a target object and all lower level objects. Local policies
apply only to that particular target object. The highest level policies (associated with the
top of the directory hierarchy) are set based on how the resources at that site must be used
for the proposed information sharing activity. The manager(s) of the application can
allow other parties to impose further restrictions on subdirectories. This policy structure
is designed to let one party have control over a given parent directory (by which we mean
the ability to manipulate security-relevant attributes of the directory such as local policy),
while another party has control of a subdirectory. For instance, a controller of a
subdirectory may be able to restrict the access rights of the parent directory's controller.

In the "normal mode" of operation, user A can grant user B the rights to create and use a
subdirectory in A's directory. The "normal" use does not necessarily give A any access
rights to a subdirectory created by B. That is, B's rights on the subdirectory may exceed
the rights of A on that subdirectory. The current design anticipates the use of "special

permissions" for a controlling party to take control of a subtarget in special circumstances
(see Section 5.6.4).

2.5.3 Certificates

Information about individuals, their characteristics, and relationships may be issued by
authorities not directly connected with the management of the information server.
Indeed, such information may be issued from different organizations at possibly different
locations. The information server needs a way to establish the trustworthiness of
information submitted to it. This is handled by the use of certificates.

Certificates consist of data that has been digitally signed by an authority, i.e., a certificate
authority (CA). The information server can check the validity of the signatures on the
certificates.

For the demonstration, we provide some certificate support for identity authentication,
but only simulated support for conveying attributes and relationships via certificates.

2.6 Adage

Adage is an access control system developed by the Open Group Research Institute, as a
DARPA effort, that has some similarities to the methods proposed here. It places
considerably more emphasis on role based access control (RBAC) and has less emphasis
on the expressive power of object relationships and attributes in access control rules.

In several places in this document, references are made to Adage for comparison
purposes. However, knowledge of Adage is not necessary to follow this report.

2.7 What Follows

We divide the description of the policy language into three main sections. The primary
part of a security policy will be rules governing access. Section 3 describes the
expression language used to form the rules to be evaluated. Those expressions refer to
particular classes, objects, and relationships. Syntax for defining those elements is given
in Section 4. Section 5 describes how the access rules can be grouped together as
policies.

Section 6 describes the classes for an information sharing system, i.e., the predefined
classes and objects. Section 7 presents an information sharing example illustrating the
approach. In Section 8, we provide a short description of an information sharing
demonstration that was built to demonstrate these concepts.

3 Expression Language
Part of making an access control decision involves evaluating boolean expressions that
involve the relationships and attributes of objects (including users). These expressions
form the content of the rules and evaluate to either true or false depending upon whether
access should be allowed. In this section, we describe the part of the policy language for
forming such expressions.

The expression language is essentially OCL [OCL], which is a language for forming
constraints on objects in the language UML. We chose it because the terms we want to
express involve aspects of an object model. In particular, OCL provides a way to form
expressions involving attributes and associations of objects. In addition, UML (and to
some extent OCL) is becoming a standard.

The language describes object characteristics at the level of specifications. An
implementation of this language requires a mapping between the classes at the
specification and implementation layers. For a fuller discussion of implementation
issues, see Section 3.17.

Note that not all features of OCL are currently implemented. In the following discussion
we indicate both what has been implemented and some minor changes to the OCL
language.

Notation
In describing grammar rules, we use the following notation:

* means "zero or more"
+ means "one or more"
() means "a grouping"
? means "optional"
a | b means "choice of a or b"

3.1 OCL Language

This section describes the grammar and informal semantics for OCL expressions that will
form the expression part of our policy language. Note that this usage of OCL is different
from what is normally found in object modeling. A typical usage of OCL would be to
form annotations on objects, such as invariants on object operations. We are using OCL
as an expression language for expressing access rules - so OCL expressions are part of
the data objects of the access control engine (see Section 3.18 for further discussion).

Note that we do not use the OCL syntax for "contexts". The context for all OCL
expressions is the model corresponding to the access control evaluation engine, and not a
particular class or function. (The elements associated with this "global" model are
introduced in Section 6).

The descriptions presented in this section are based on the OCL specification report
[OCL]. For a more complete description of the OCL language, see the OCL specification
report. In Section 3.16, we describe some extensions we made to OCL.

3.2 OCL Comments

Comments start with two dashes and include everything up to the end of the line

-- sample comment

3.3 Types and Values

3.3.1 Basic values and types

The basic types are Boolean, Integer, Real, and String

Some examples of the possible values are:
• Boolean: true, false
• Integer: 1,2, -38, 1243123, ...

• Real: l. 3, 4.25, ... (integers are a subtype of reals)
• String: 'Some text1

Standard operations on these types

• Integer: *, +, -, /, abs, div, mod, max, min, =
• Real: *, +, -, /, floor, abs, max, min, <, >, <=, >= ,=
• Boolean: and, or, xor ,not, implies, if-then-else, =
• String: toUpper, toLower, concat, size, substring(lower, upper), =

(Strings operations are not currently implemented in our demonstration. Only arithmetic
and comparison are implemented for Integer and Real.)

Mixed expression of integers and reals are allowed and integers are implicitly coerced
into reals where appropriate (see [OCL] for more details).

Note that not all expressions in OCL are necessarily defined. An undefined
subexpression in OCL does not necessarily mean that the expression is undefined. The
boolean expression "false and anything" is false and the expression "true or anything" is
true. However, for our purposes and unlike for standard OCL, "undefined and anything"
and "undefined or anything" are always undefined.

In the slightly modified version of OCL that we define here, the handling for undefined
terms with implication is similar to the above. The expression "false implies anything" is
true. (We do not want the access rules to have side effects and a short-circuit method of
evaluation can speed up the access control decision.)

3.3.2 Classes

The object introduction part of a model can introduce new classes (see Section 4.1).
These class names can be used as types in the object expression language. Associated
with a class is the structure consisting of its attributes (data members) and operations.

In OCL "=", "<>" are defined on user-defined classes to mean the objects are (or are not)
the same. In our access control language this is the default interpretation. If needed,
these operators can be defined differently in particular classes (see Section 3.16.4). For

10

example, it is possible to redefine "="to mean that the objects compared have the same
attributes. However, to avoid potential user confusion it is recommended that if equality
is to have a different interpretation that a different syntax be used. For example, one
could introduce an operation "byAttributeEqual" to mean that attributes of two objects
of some class have the same values. (Note that "=" for basic types, as opposed to classes,
is defined to mean that the primitive values are the same.)

3.3.3 Enumerated types

The type of some variable may be a finite set of values. This is often called an
enumeration type. The OCL syntax for an enumeration type is:

enum {valuel,value2, ...}

In an OCL expression, a # is used before an enumerated value to avoid conflicts with
attribute names. (See section 3.16.5 for a discussion of a potential alternative approach.)

3.3.4 The Let construct

OCL version 2.0 contains the "let" construct, which is useful for simplifying an
expression. For example:

Let user:actor = request.requestor in
if user.hasmasterauthorizationO then

true
else if user.hasprojectauthorizationO then

user in {userl,user2}
endif endif

is the same as

if request.requestor.hasmasterauthorization() then
true

else if request.requestor.hasprojectauthorizationO then
user in {userl/user2}

endif endif

This feature is currently not implemented.

3.4 Collections

3.4.1 Sets, bags, and sequences

Collections may be formed out of other types. Either the generic "collection" keyword
can be used or the more specific keywords: Set, sequence, and Bag.

set {1,8,3} is the set consisting of the elements l, 8, and 3.

Sequences have the elements ordered.

11

Sequence {2,7,5} is different from Sequence {7,2,5}

Bags are like sets, but allow duplicate elements.

asset, asSequence, asBag can be used to convert between these collections.
Note that asSequence picks some unspecified ordering.

For integer expressions a and b with a<b, Sequence {a. .b} is the sequence of elements
starting at a and ending at b.

(Currently, only sets are implemented.)

In OCL, collections of collections are not the same as in ordinary mathematical usage.
OCL collections are always flattened, set {Set {1,3}, set {4,5}} is the same as
set {1,3,4,5}. In the current version of the access expression language, collections are
not automatically flattened. Sol is not included in set{ set {1,3}, set{4,5}}.
To flatten a collection one could explicitly use a "flatten" operation. (No flatten
operation is implemented in the current demonstration.)

3.4.2 Select, reject, and collect

select, reject, and collect can be used to form subsets.

These have not yet been implemented in the current demonstration.

There are three different ways to use these functions.
collection->select(boolean-expression)

forms the subset of "collection" whose elements satisfy the boolean expression.

collections select(p | boolean-expression)

also forms a subset. It is the set of all p in the collection that satisfy the boolean
expression. This second form allows the iterator p to be evaluated in the expression

collection->select(p:Type |boolean-expression)

is like the second form but restricts the type.

A similar syntax holds for reject, where the expression describes the elements that are
not in the set. (This is equivalent to selecting with the negation of the condition.)

collect is used to form subcollections of a different type from the base collection - for
example, the set of ages in a collection of employees.

a->coliect (attr) forms a bag of values of the attr attribute of each member of a.
(Hence it is the same size as a.)

Other syntactic forms of collect are:

a->collect(p | expression)

12

a->collect (p: Type | expression) may also be Used.

An additional syntax for collect is also available. When b is a set and propertyname is a
property on items of that set, then

b. propertyname is a shorthand for b->collect (propertyname)

3.4.3 Additional collection operations

Additional operations can be applied to collections.

For any collection:

■ includes (i.e., membership, a->inciudes(b) means that a "=" one of the elements
ofb)

■ size
■ count
■ inciudesAii (i.e., superset, a->inciudesAii (b) is true when b is a subset of a)
■ isEmpty
■ notEmpty
■ sum (i.e., add all of the elements of the collection)
■ exists, forall, iterate (see Section 3.10)

(Only the includes and inciudesAii operations have been implemented.)

In addition to these OCL operations, we introduce a flatten operation to explicitly
flatten a collection. (Recall that we are not automatically flattening collections, in
contrast to OCL; see Section 3.4.1.)

For sets and bags:

union
intersection

= (for sets they have the same values. For bags, the values must occur the same
number of times.)
- (set difference)
including (adds an element to the set)
excluding
symmetricDifference (for sets only)
select
reject
collect
count (number of occurrences of an object)
assequence (conversion to a sequence picks some order for the elements)
as set, asBag (conversions for bags and sets, respectively)

For sequences:

13

union (sequence concatenation)
= (the sequences have the same elements and in the same order.)
append (add one new element)
prepend
subsequence
at (value at ith position)
first
last
including (same as append)
excluding
select
reject
collect
iterate
asBag
asSet

None of these operations has been implemented in the current demonstration.

3.5 Object Properties

Object attributes, object operations, and object association ends are collectively referred
to as object properties.

3.5.1 Object attributes

We refer to an attribute of an object with the period notation. For example, attribute b of
object o can be referred to as o. b.

The OCL expressions that are used here are in the context of the access control engine.
The term "self" in a rule refers to that object. Typically, this term is dropped because it
is clear from the usage. (The "self" keyword has not been implemented in the current
demonstration.)

Properties of a set of elements are indicated by using an arrow. For instance, the
expression "a. start->size" specifies the size of the set "a. start".

When an object is not a set, the arrow operation treats the object as if it were a singleton
set.

3.5.2 Object operations

A class may also introduce operations. The period notation is also used to indicate
invocation of the operation.

For example, a. f (c) is the operation f applied to a, with additional parameter c.

14

3.5.3 Object association ends

Classes can be related in a number of ways in UML. An "association" between two
classes represents the particular relationships between the instances of those classes. (In
UML, there are other kinds of relationships between classes that do not correspond to
relating the instances of the classes, for example, generalization.)

We use associations as part of access control expressions. Not all of the UML
relationships between objects of a specification will correspond with relationships in the
expression language (relationships that are intended to be evaluated). Instead, the
relationships of the expression language correspond to those relationships that will be
asserted with credentials.

In addition to having a name, an association may have "source and destination" names, to
navigate from one end of the association to the other.
These are called the "association ends" of the association.

Suppose R is an association starting in class c and ending in class D. Suppose further that
the association end names are "start" and "final" for class c and class D, respectively.
Say c is an object of class c.

Then "c. final" refers to the elements d of class D for which R (c, d). In OCL,
"c. final" is a set of values in D, unless the size of "c. final" is constrained to be at
most one element (see next paragraph). In this case, "c. final" is just an element in D

and not the singleton set of that element.

Sometimes association end names are also called "roles". We avoid the use of the word
"role", since in the context of access control, this may be confused with user roles. Also,
some authors refer to the destination of an association as the "target". We avoid this
convention, because we use the word "target" to refer to a target object.

A multiplicity constraint in UML describes size limitations on an association. The syntax
"a.. b" indicates the range of allowable sizes for an association end. Probably the most
useful forms of multiplicity allow a user to indicate whether a relation is a function,
partial function, and whether it is 1 to 1. In the present version of our system, we only
support two cases. Either the multiplicity is not specified or the destination multiplicity
is indirectly specified as 0..1 from a dynamic attribute declaration (see Section 4.1.4).

When an association end name is not specified in the UML description of an association,
the end name defaults to the association name, with the first letter in lower case (provided
there is no ambiguity).

3.5.4 Navigation to and from association classes

Navigation to an association class (see Section 4.1.3) also uses the dot notation. The
expression o. a, where o is some object and a is an association class name with the first

15

letter lower case, means the set of all objects of the association class that are involved in
the relationship from object o by the association a.

If o is an association object (i.e., link object) with an association end named r, then o. r
is the object at that end of the relationship indicated by r.

Our current implementation does not support navigation to or from association classes.

3.6 Casting and Conformance

Certain types are automatically changed to other types before an operation is applied.
For example, an integer may be converted to a real in the evaluation of an arithmetic
expression. In fact this is the only case that is currently supported.

Types can be explicitly recast, when appropriate, by using:

someobject.oclclasstype(SomeType)

Currently type recasting is not supported.

For details about type casting and conformance, see the OCL reference manual [OCL].

3.7 Operator Precedence

The precedence of the OCL operators is
'.'and'->'
unary 'not' and unary '-'
'*'and'/'
'+' and binary '-'
'and', 'or' , and 'xor'
'implies'
'if-then-else-endif'

'<=', ->=', and ' = ' I~I I^I

Note that arithmetic operators follow the normal mathematical convention, however,
and, or, and xor have the same precedence. This operator precedence is built into the
OCL grammar (see Section 3.14).

Also note that the precedence for implies is ambiguously specified in the current OCL
documentation. The textual specification in [OCL] is as above, but the OCL grammar
[OCL] differs. (In the current implementation, the operator precedence for implies is as
above.)

The current implementation also splits the precedence level for and, or, and xor. The
order from lowest to highest is or, xor, and and.

16

3.8 Packages

In UML, types may be organized into packages.

Packagename:: typename can be used to specify the type in a package

The current implementation does not support this feature.

3.9 Type Features

There are additional OCL features pertaining to using OclType.
These include oclType, oclIsTypeOf, oclIsKindOf, oclAsType,and

aiiinstances. They are currently not supported.

• oclType returns the type of an object.
• ociisTypeof returns true if the type of the object is the specified type
• ociisKindof returns true if the type of the object is the specified type or a supertype

of that type
• ociAsType allows an object to be treated as if it was in a supertype to get at

overridden attributes.
• aiiinstances returns the set of all instances of a given type. The OCL reference

manual recommends that this feature not be used.

ocLExpression, ocLType, and ocLAny are additional basic "types" in OCL. They are
currently not supported.

• ociExpression is the "type" of an OCL expression
• oclType is the "type" of types
• ocLAny is a supertype of every type

oclIsNew and oclIsInState are not applicable to the way OCL expressions are being used
and are not supported.

3.10 Quantifiers

Quantifiers, such as forall and exists, can be used to form complex expressions. This
feature is best avoided when writing access rules. First, the computations involved may
be time consuming. Secondly, the information available at the information server may
only partially capture the real-world situation, and hence a computed interpretation of the
expression may not produce the expected value (see Section 3.16.3). When possible, the
application developer should provide methods that reduce the need for quantifiers.
(Quantifiers have not been implemented in the current demonstration.)

The expression c->forall (pi, p2 | pi <>p2 implies pi.name <> p2.name)
results in true if, for every pi and p2 in the collection c, if pi is not equal to p2 then
pi. name is not equal to p2. name. That is, the expression is true if different elements of c
have different names.

17

In OCL, there are also two additional syntactic forms for the forall quantifier.

Similar constructs are available for the "exists" quantifier.

3.11 Iterate

The "iterate" construct provides another way of making quantified assertions.

a->iterate(elem:Type; acc:Type = expression | expression-with-elem-and-
acc)

ace is the accumulator of the construct and is originally set to expression.
The expression expression-with-eiem-and-acc is evaluated for each el em, as elem
iterates over the collection a. Each time through the iteration, the accumulator is set to
the value of expression-with-eiem-and-acc. The result is the final value of ace.

The following Java-like pseudocode describes the semantics.

iterate(elem:T; ace:T2=value)
{

ace = value;
for (Enumeration e= collection.elements(); e.hasMoreElements;)

{
elem=e.nextElement();
acc=expression-with-elem-and-acc

}
}

Note that the value of the result may be implementation dependent for sets and bags if the
order of evaluation makes a difference. As with quantifiers this feature has not been
implemented in the current demonstration

3.12 The ©Operator

Time expressions in OCL are indicated by the @. This can be used for describing the
value of an expression before or after a method is invoked (in a precondition or
postcondition). However ©pre in OCL is not particularly useful for access rule
expressions and is not supported in our language.

3.13 Context

In OCL, the context syntax is used to designate the class or operation to which a
particular invariant or condition applies. For this project, OCL expressions are used for
access rule evaluation and not as constraints on classes or operations.

A "context" for the ACL expressions could be considered to be the access control engine.

18

3.14 Grammar as in OCL manual

expression := letexpression? logicalExpression

logicalExpression :=
relationalExpression (logicalOperator relationalExpression)*

relationalExpression :=
additiveExpression (relationalOperator additiveExpression)?

addi t iveExpres s i on : =
multiplicativeExpression (addOperator multiplicativeExpression)*

multiplicativeExpression :=
unaryExpression (multiplyOperator unaryExpression)*

unaryExpression := (unaryOperator postfixExpression)
| postfixExpression

postfixExpression := primaryExpression (("." | "->") featureCall)*

primaryExpression := literalCollection
| literal
| pathName timeExpression? qualifier?

featureCallPararaeters?
| "(" expression ")"
| ifExpression

letExpression := "let" <name> (":" pathTypeName)? "=" expression "in"

literal := <STRING> | <number> | "#" <name>
literalCollection := collectionKind "{" expressionListOrRange? "}"

expressionListOrRange :=
expression (("," expression)+ | (".." expression))?

featureCallParameters := "(" (declarator)? (actualParameterList)? ")"

featureCall :=
pathName timeExpression? qualifiers? featureCallParameters?

ifExpression :=
"if" expression "then" expression "else" expression "endif"

enumerationType := "enum" "{" "#" <name> ("," "#" <name>)* "}"

simpleTypeSpecifier := pathTypeName
| enumerationType

qualifiers := "[" actualParameterList "]"
declarator := <name> ("," <name>)* (":" simpleTypeSpecifier)? "|"

pathTypeName := <typeName> ("::" <typeName>)*
pathName := (<typeName> | <name>) ("::" (<typeName> | <name>))*

19

timeExpression := "@" <name>
actualParameterList := expression ("," expression)*
logicalOperator := "and" | "or" | "xor" | "implies"
collectionKind := "Set" | "Bag" j "Sequence" | "Collection"
relationalOperator := "=" | ">" j "<" | ">=" | "<=" | "<>"
addOperator := "+" | "-"
multiplyOperator := "*" | "/"
unaryOperator := "-" | "not"
typeName := "A"-"Z" ("a"-"z" | "0"-"9" | "A"-"Z" | "_")*
name := "a"-"z" ("a"-"z" | "0"-"9" | "A"-"Z" | "_")*

number := "0"-"9" (»0"-"9")*
string :=

""' ((-["'", "\\","\n", "\r"])

| ("\\"
(["n","t","b","r","f","\\","'", "\""]

| ['■ o" -" 7 "] ([" 0" -" 7 "]) ?

j [" 0" -" 3 "] [" 0" - " 7 "] [" 0" -" 7 "]

)
)

)*

3.15 Constants

Associated with OCL constants are lexical rules for how they are recognized.

Integer constants are the standard decimal representations of numbers (The lexical rule is
actually part of the OCL grammar as the definition of a number.)

Boolean constants are the names "true" and "false".

Real constants are decimal numbers. (We also support real constants that have an
exponent. We use the lexical rule of Java.)

Enumerated type constants are names.

The constant "NULL" is a possible value for any object and indicates the absence of an
object reference. (See section 4.1.4 for a case in which it is useful.)

Collection constants, such as Set{3,4, 5}, are parsed as in OCL.

3.16 Language Extensions

3.16.1 Set operations

We augment the language with the convenient syntax "x in a" for the expression
"a->includes(x)".

20

We also introduce the syntax "a contains x" for the expression
a->includes(x)".

The precedence of these options is in the following place in the hierarchy. (See Section
3.7 for the full hierarchy.)

■ \'and'->'
■ 'contains' and 'in'
■ unary ' not' and unary'-'

Note that in the current implementation, the "contains" and "in" operations have been
placed at the precedence of relational operators, rather than at the level of '.' and '->'.

3.16.2 Names of users and files

We would like a convenient syntax to refer to individual users in expressions. Since
users in different organizations may have the same internal "name", we need to use
"namespaces" to distinguish them. We could introduce a type of
Sequence (Namespace, string), but the syntax for designating a name would be
inconvenient, especially as it may appear frequently. Hence, we intend to use a syntax
such as:

username := Namespace

Namespace := name (("from" NameSpace) | ("/" Namespace)))*

It is possible that a future version of the system might also support name :: Namespace
as this is how package names are built in OCL.

We avoid the standard syntax of periods (such as in email addresses), because the period
is already used in obtaining the attribute of an object and invoking an operation. Also,
the forward slash is sometimes used for directory structures, and it is also used in Adage.

Note that a user GUI could use shorter names without a fully qualified namespace, if the
prefix of the name was the same as the users.

Namespaces are not currently implemented. Note that it may also be useful to use
namespaces for files. This is also not implemented.

In the current design, not all names used in an expression must resolve to references to
objects. This accommodates the fact that both users and files are not necessarily
persistent for the lifetime of an information sharing project. At the time an OCL
expression is evaluated, if a name does not refer to some object then the result is the null
object. Thus, a name is essentially an abbreviation for a function of the form
getobject ("somename"), i.e., a function that returns an object based on some string.
This has the advantage of making the syntax simpler to read, but the disadvantage of

21

having weak typing. An alternative syntax could explicitly require something like
Getuser("somestring"), whenever the type was not inferable from the context. Users can
avoid this use of names for objects by referring to a string attribute of an object in a rule
rather than to the object itself. E.g., one could use
if (request.requestor.name= "Fred") rather then
if (request.requestor=Fred).

Since a name can refer to a null object, expressions should be built that check for null
before trying to reference an attribute of an object referred to by a name.

In the current design, we do not enforce the OCL restriction that names of objects should
start with a lower case letter and names of types should start with a capital letter. (For
example, the name Fred, can refer to a user.)

3.16.3 Interpretation of expressions involving relationships

We may need to refer to the manner in which a particular relationship between objects
should be determined.

Consider the expression
not (a.employedby contains b)

What should the expression mean?

■ the requestor does not provide "empioyedby" evidence
■ the information server does not have the evidence
■ some attribute authority does not provide such evidence
■ there is no evidence
■ the real-world empioyedby relationship does not hold between a and b

In practice, there is no way to evaluate the last item, because the computation must be
based on some data, but the other alternatives might be useful.

We could introduce a new keyword, such as eval, that specifies how a particular
expression should be evaluated.

eval(how_to_evaluate_id, expression)

However, no such extension is currently implemented, and we currently interpret
relationships by using the evidence at the information server.

3.16.4 Comparison operations

It would be convenient to use some of the standard operation symbols for classes other
than the basic types. The most useful, for our purposes, are the comparison operations.
(These can be introduced in new classes, see Section 4.1.1.1.)

22

If operators are defined for either "<" or "<=", and operators are not defined for the other
inequalities, then they will be implicitly defined using comparison methods in the
standard way. (Note that we would not normally expect someone to define both ">" and
"<".) If the operator "=" is defined and "<>" is not defined, then "<>" is implicitly
defined as not "=".

As Java does not support overloading these operator symbols, the implementation
convention is that the names of these symbols are called: equals, notEquais,
lessThan, greaterThan, lessThanOrEqual, greaterThanOrEqual.

(In the current implementation, only greaterThan and Equals should be defined. The
others are implicitly defined by these.)

3.16.5 Enumerated values

It may be useful to weaken the rule that requires the use of # before an enumerated
symbol in an expression. The "context" for access rules is the access control engine, and
it is possible that an enumerated value might conflict with a named object (e.g., the
attribute of the access rule evaluation class need not be prefixed with self in an access
control rule). An alternative to the use of the # is to simply prohibit the use of
enumerated values which will conflict with those names.

Since enumerated values have not been implemented, this recommended change has no
impact on the current demonstration.

3.16.6 Extension for collection type formation

We introduce a generalization of simpleTypeSpecifier to handle collections.

TypeSpecifier := pathTypeName
| enumerationType
| collectionType
| "AnyType" — note the standard OCL keyword is OCLAny

collectionType := collectionKind "(" TypeSpecifier ")"

The grammar for introducing classes uses TypeSpecif ier when introducing attributes.

It is possibly useful to introduce new type names for types that are built from collections
and enumerated types. (See Section 4.1.5).

3.17 Implementation Issues

3.17.1 Class definitions

The policy language allows new classes to be added, so the access control engine can be
designed to evaluate a wide range of expressions. For example, an integrity level class
could be introduced and an integrity level attribute could be part of a target class.

23

Note, however, that for the interpreter to evaluate expressions that involve new classes,
additional executable classes are required that implement the desired functionality of
those classes. If a new concept of integrity level is desired, and comparisons of these
levels are used in an expression, then a definition of the comparison functions must be
provided in a Java class.

Java implementation classes contain sufficient information so that a separate specification
of these classes is not needed. Information about the members and methods of a "new"
class can be obtained at run-time. However, some kind of specification is needed in
order for users to understand the terms. We provide a syntax for textually specifying new
classes in Section 4.1.

3.17.2 Language constructs

For uniformity in handling the objects in the Java implementation, we have implemented
real, integer and boolean as the classes Double, Integer and Boolean respectively (as
opposed to the primitive types). Similarly, we use Java Strings for Strings.

For an OCL class, we use a Java implementation class with fields corresponding to the
attributes of the OCL class and methods corresponding to the class operations. This use
of Java classes has the side effect of mingling Java functionality with OCL functionality.
For example, there will be methods on the Java class intended only for internal system
use, and which are not to be used in OCL expressions; the same holds true for attributes.
There is no mechanism presently in place to prevent a rule from invoking a method on
the Java object that is not intended to be part of the OCL notion of the rule.

3.18 Language and Meta-Language

This section provides some technical points for UML modelers on the difference between
using OCL in the access control system presented here and the more standard usage.
(Other readers can skip this section.)

OCL is typically used to express properties on functions or classes, such as invariants,
preconditions, and post-conditions. Thus, OCL is used as a "meta-language" to make
assertions about the functions of an object. An OCL expression as used here, however, is
data that is evaluated by (Java) code. Thus, certain constructs that are reasonable to use
as invariants are less useful for specifying a term to be evaluated. Generally, the OCL
used here is for the purpose of "navigating" to the attributes of some class and then
applying Java methods to those values.

Readers experienced in UML modeling should note that because of the difference in how
OCL is being used, what constitutes specification and what constitutes implementation
with our access control mechanism are not standard. The operations that will be
evaluated, from the point of view of access control, are those used in determining object
characteristics. The operations that are only specifications (and do not get evaluated
during access control) are the real operations to be applied to the target objects.

24

3.19 What follows

So far, we have just introduced how to form expressions in the language. Some of the
identifiers refer to classes, relationships, and attributes. In the next section, Section 4, we
describe a syntax for introducing these classes, relationships, and attributes. Then, in
Section 5 we will show how these expressions are used to construct security policies.

4 Classes, Relationships, and Attributes
In this section, we describe a syntax for describing the classes, objects, and relationships
that are used in the expression language. This part of the specification is needed so that
users can understand the vocabulary used in the access control expressions. It need not
directly correspond to the class definitions used in the access control engine
implementation.

Note that a graphical, UML style of specification could be used instead of the textual
specification presented here.

4.1 Object Model Declarations

As in UML, there are classes (with attributes and operations) and relationships. These
are declared by classDeci and reiationDeci constructs, respectively.

There are also declarations for specific objects and values, objectDeci and vaiueDeci.
We also use attrDeci statements for specifying attributes that are defined at a later stage
than object creation (similar to relations, see section 4.1.4). Finally, we permit the
introduction of aliases using AliasDeci.

objectmodelDecl := classDeci |objectDeci | vaiueDeci | reiationDeci
|attrDeci | AliasDeci

4.1.1 Class statements

Class statements specify classes, their attributes, and their operations.

In our approach, there are two different kinds of classes. One kind describes data types
used in evaluating terms in the access rules. The other kind characterizes the methods
and attributes of the target objects. Determining access to a target object should not
involve applying one of the controlled operations on the target, since an access decision
should be made prior to any action taken on the target. However, in the access rules, we
may want to refer to some property of an operation on a target class (e.g., performs
READs but not WRITEs). To clarify this distinction, we will introduce a syntactic
difference to distinguish between these kinds of classes. They are "class" and
"Targetspecciass", respectively. Classes designated by "class" are referred to as
standard classes.

classDeci := standardClassDecl | targetSpecClassDecl

25

4.1.1.1 Standard classes

Aspects of a class that may be defined are described below.

■ Attributes. Attributes can be shared among all objects of a class, or they can be object
members. We use the word "shared" to indicate class attributes that are shared
among all the objects of a class. (In programming languages, this is sometimes called
"static". In UML, it would be called "class-scope".)

■ Operations. Operations may be invoked on the objects of the class. These are used
both in the specification of access rules (part of the OCL expressions), and they are
realized in an implementation to do part of the access evaluation. (In UML, methods
are the implementation of an operation. We currently use the keyword "operation"
to introduce the signature of an operation/method. We currently use the keywords
"operation Symbol" to introduce symbols involved in operator overloading.) Class
operations, i.e., those that do not need to refer to a specific object of a class are
indicated by the keyword "ciassoperation". (In Java, such constructs are called
static methods.)

■ Inheritance. A class may inherit from another class. (Only single inheritance is
permitted.)

Named objects of particular classes can be introduced as part of the application class (see
below 4.1.2).

standardClassDecl := "Class" classname
(

("Inherits" pathName)
| ("shared")? attrname ":" attrtype
I ("Operation" | "ClassOperation") opnamedef

"(" operation_parameters ")"
(":" returntype)?

)*
"End"

classname := name

Operations can have an alphabetic name or can refer to a comparison operator.

opnamedef := name |
"Symbol" (" =" | "<>"|"<"|">"|"<="|">=")

operation_parameters := operation_parameter*
operation_parameter := paramname (":" typeexpression)?

returntype := <name>

paramname := <name>

attrname := <name>

26

attrtype := TypeSpecifier

It would be desirable to use packages to aid in grouping related classes. This is used in
OCL but our current demonstration implementation does not support it.

4.1.1.2 Target specification classes

A target specification class is used to model characteristics of target classes needed for
access evaluation. Its declaration syntax resembles the standard class declaration, but its
use is different.

The key differences between a target specification class and a standard class are:

1) a target specification class corresponds with a class of the object manager's target
objects, and

2) a target specification class defines "actions", and properties of those actions, which
correspond with the methods of the object manager's target objects. (Note that this
notion of action is not the same as the UML notion of action - the actions of a target
specification class are a kind of attribute used to characterize a method of another
class.)

Note that every target specification class has the same name as some target class of the
object manager.

Item (2) permits access rules to be expressed in terms of properties of the methods that
are to be invoked on an object. A method of a target class is represented as an "action" in
the target specification class. An action can have its own attributes (called "properties"),
and access rules can involve these properties. An access rule may also involve the
arguments to be supplied to a method of the actual target object. These are treated as
attributes of the action. Return types of actions are not used, since the values returned by
the actual operations will not be known at the time of the access decision.

The collection of all actions constitutes the objects of type Actiontype. This type is not
part of a particular target specification class. This permits expressions such as
request. operation = read. However, in the current version, because actions are
associated with the methods of some target object, they are incrementally specified in
their appropriate target specification classes. If an action is introduced in more than one
target specification class, it refers to a common action and must have an identical
specification. (The current implementation does not permit the same action in more than
one target specification class; each action of a given target specification class must have a
globally unique name.)

Suppose newf ile (init: String) : boolean is a method of a target class, directory,
where newfile has aproperty called "access" with possible values of READ,WRITE, or

27

BOTH. The newfile action would be specified in the target specification class, directory,
as

Type accesstype = enum{READ,WRITE,BOTH}

Action newfile(init:String) property access:accesstype is WRITE

This introduces an action object for the class that can be referenced by
directory .newfile. The object has an attribute, called opname, that is the string that
names the operation, in this case "newfile". It has an attribute, access, with its value
set to WRITE. It also has an attribute for the parameter init of type string, which is
defined at the time a request is made. (A default value for init could be used for
requests with unspecified parameters. This feature is currently not part of the
specification language.)

Note that in the current design, all parameters of a request are contained in a parameter
list. There is no explicit specification that associates the name of the parameter for the
action with a parameter in the parameter request list. In a future version of the system,
we may switch the parameter list to a list of parameter name/ parameter value pairs. In
this case, the name of the parameter in the action operation should correspond to one of
the parameter names in the list of pairs. In the current version, there should be an
informal description that describes the purpose of each parameter in the parameter list.

When a request is made, it will include the operation name and possibly parameter/value
pairs. This introduces an action object of the type described above, with the parameters
of the action object set to the values of the request (possibly using the defaults of the
action object for the class). "Property" values of the action object associated with the
request are set to the property values of the action object of the target class.

There is one built-in property for all actions, which indicates whether a particular action
is a kind of object "creation". This is called "isCreate" and it is either true or false. If
the property is not specified, it is assumed to be false. For files and directories, these are
the operations "CREATE" and "CREATEDIR" respectively.

One can form expressions involving the action, such as:

(request.operation.access = READ)
(size(request.operation.init)< 1000)
(request.operation.opname=directory.newfile.opname)

A target object will also have trust polices associated with it. These are described in
Section 5.

targetSpecClassDecl := "TargetSpecClass" classname

(
("Inherits" pathName)

| ("shared")? attrname ":" attrtype
I "Method" opnamedef "(" operation_parameters ")"

28

(":" returntype)?
| "Action" opnamedef

("(" operation_parameters ")»)* (op_property) *
| "Actions" (opnamedef)* "End" -- an alternate notation

-- for listing many actions
)*
"End"

op_property := "Property" name ":" attrtype is expression

In the current version, if no inheritance is specified, it is assumed that a particular
Targetspecciass inherits the class "Targetspec". See Section 6.2 for a description of
the TargetSpec class.

Note that actions are really not part of the target specification class. They incrementally
define the set of actions in an enumerated type called Actiontype. When inheritance is
used, the set of actions "for a target specification class" is the union of the actions from
the inherited class with the ones introduced in the target spec class. The way actions are
incrementally defined has no impact on access rule evaluation, but, for clarity, the actions
for a target specification class should correspond to the operations that can be applied to
the corresponding target class.

Note that the specification of a target class does not provide details such as how the
attributes are set or retrieved. For example, the creation date may be associated with a
file, so that retrieval of such an attribute may involve a file system call.

In addition to the attributes associated with a target specification object, there are access
policies that govern the access control to that object. See Section 5.

Actions are currently only implemented in a simple form. The present demonstration
implementation does not provide support for handling action attributes.

4.1.2 Object declarations and default objects

Sometimes access rules must refer to particular values—that is, to objects of the access
control engine class. Some of these are constant for the application, and some are set in
the course of the system being used.

For example, one of the predefined objects described in Section 6.4 is the "request".

These named objects are essentially attributes of the access control engine class. These
attributes can be formally introduced using the class syntax described above.

If all or part of an object is really constant for the application, it might be useful to
specify the values of the constant parts. We introduce a syntax to support this.

objectDecl:= "Object" name ":" name

29

(attrname "is" OCLexpression)
"End"

The type of the attribute referred to by attrname is defined by the class of the object.
The OCLexpression on the right should indeed have that type.

Non-object values can also be introduced.

valueDecl := "Value" name ":" typename is OCLexpression

where the type name is either a basic type of a collection operator.

4.1.3 Relation statements

We introduce a syntax to declare a "relation" (called an "association" class in UML
[Rat97c]) that encapsulates a relationship between two classes, and also may carry
attributes. For instance, one may have a relation "ReportsTo" between the classes
"Actor" and "Actor", with a boolean attribute "supervisory". An instance of a relation
(called a "link object" in UML) is therefore a pair of objects of the respective classes,
along with attribute values.

The UML/OCL association syntax provides a convenient way to build expressions that
can be used to go from source to destination and from destination to source. Note that in
UML, an association class cannot possess two different link objects with the same source
and destination and different attributes.

We may want to use certificates signed by some authority to indicate whether a given
pair of objects is in fact related. We can use a relation instance to store the trust
information that the certificates convey.

In addition to supporting certificate based relationships, we may need to refer to
relationships that are built into the structure of the target of the objects. For example, the
fact that a file is "contained in" a directory will be a relationship that is implicitly defined
by the file system, and will not be certificate based. We use the keyword, buiitin, to
indicate those relationships that are not certificate based.

The syntax for relations is:

relationDecl : = "Relation" name ("buiitin")?
"Source" classname (endname)? (multiplicity)?
"Destination" classname (endname)? (multiplicity)?
(relationattr)*
"End"

30

The "source" and "Destination" keywords are used to introduce the "association ends"
(see Section 3.5.3). (In order to avoid ambiguity between navigating to relation instances
and source (or destination) objects, association endnames should be specified.)

endname := name

multiplicity := "Multiplicity" multexpression ".." multexpression
multexpression := "*" | expression

relationattr := "Attribute"
(attrname ":" attrtype)*

(An alternative syntax would be to replace the collection of relation attributes with a class
that contains those attributes. The disadvantage of this approach is that it makes the
expressions that refer to the attributes more complex.)

In the current version of the project, the multiplicity constraint is not used. If a
destination constraint of 0..1 is desired, then the association should be specified as a
dynamic attribute (see Section 4.1.4).

In UML, it is possible to indicate navigability constraints as to how a relation (link
object) can be obtained In particular, it may only be possible to obtain the destination
object from the source, but not vice versa. (In the UML graphical language, this is
represented using arrows on the association line.) This specification is not supported in
our current language. However, an application implementer may choose to implement
only one-way lookup for some associations. In this case, an informal comment should be
added to the specification.

It is possible that there are link objects with particular attributes that a user should be
aware of. One could use the following syntax:

"Relation Instance" name name
— relationname instancename

(attr "is" value)*
"End"

Relationships can be useful in building groups. For example, a relationship could be
established between an employee, A, and his supervisors, say, "ReportsTo". Then the
expression manager A. reportsto would specify the group of users to whom A reports.
As another example, there could be a class of objects called projects and a relationship,
members, that specifies the members of the project. The expression
coiiaborationproj .members would indicate the members on that project. The
authorization authority for establishing the project members need not be a system
administrator. The appropriate signatures on the certificates to establish membership can
be defined in the trust rules for that relationship.

31

The grammar supports relationship attributes, and they are needed if we want to refer to
the trust of some particular association instance. However, using OCL to refer to the
attribute is awkward. Suppose objecti is connected to object2 by sampiereiation
and that there is a link instance associated with this relation. In OCL,
objecti. sampiereiation refers to the set of all link objects that objecti is connected
to. One could take the intersection of objecti. sampiereiation and
obj ect2 . sampiereiation, to obtain the set of link objects (there is at most one).
objecti.sampiereiation ->intersect(object2.samplerelaton).

We introduce an extension to the OCL syntax to handle this.

"therelation" "(" relationname "," objectname "," objectname ")"

This specifies the partial function that returns the link object between the objects. For
example, an attribute "temperature" of a link object might be obtained as:

therelation(sampiereiation,objecti,object2).temperature

This is not implemented in the current demonstration.

As an alternative, we might have the return value be a set that is either empty or a
singleton set, in order to make the function total.

4.1.4 Dynamic attribute declarations

Some attributes associated with an object might be provided as independent evidence
from the object itself, such as by a certificate signed by some authority. We refer to
attributes based on certificates as dynamic attributes.

The general notion of a dynamic attribute is that it is a value attested to by some
certificate. From an implementation point of view, such an attribute is like the
destination of a (functional) relation. From a conceptual point of a view, it is just an
attribute of an object. However, if we want to provide trust information about associated
attributes, then a pure attribute approach becomes messy. We would need the attribute to
contain both a value and certificate information, and then we would have to use a
(secondary) attribute name to reference the value part of the attribute. For this reason, we
will introduce a new syntax.

A simpler notion of dynamic attribute that might also be useful is one that indicates the
existence of a certain certificate (where the value is not important). For example, a
certificate could be used as a kind of token to grant a capability to a user. Note that this
is different from an ordinary attribute whose value is a certificate, in that the dynamic
attribute is assigned based on the receipt of some certificate, and therefore is not
determined at the time the object is created. This distinction is a reason to introduce a
different syntactic construct for this kind of dynamic attribute.

The current specification language supports both of these notions of dynamic attribute. It
allows dynamic attributes with or without "values". The information from an external

32

certificate is divided into two pieces, a piece that is used for all dynamic attributes (the
common certificate type) and a value piece (when appropriate).

We use a modification of the relation syntax for dynamic attributes.

attrDecl := "Attribute" name
"Source" classname
("Destination" classname (endname)?

("default" OCLexpression)?)?
"End"

The expression o.a, where a is the name of the attribute, is the representation of the type
of dynamic certificate if one exists, otherwise it is NULL.

The destination field is optional (in case the value is not needed). Unlike relations, the
expression o. d, where d is a destination of a dynamic attribute of o, returns an element of
the type of the destination class (the "value"), just like a normal attribute of a class
(relations, in contrast, return sets of values). Note that this formulation of dynamic
attributes is equivalent to UML associations with multiplicity 0..1.

If an attribute value has not been specified for an attribute with a destination field, then
the attribute will have a default value. If a default value field is present in the
specification then that field defines the attribute's default value. If the field is not present
and the attribute type is a class then the default value will be NULL, otherwise, the
attribute type is a basic type and the default values are as follows:

Integer is 0,
Real is 0.0,

• Boolean is False, and
• String is"".

Value-based attributes are not implemented in the current demonstration. That is,
destinations are not used. Also, there is currently no user interface for adding, viewing or
deleting dynamic attributes.

4.1.5 Aliases

It may be useful to have aliases for objects or values that are defined by an expression.
For example, we might want to refer to a. b. c. d as just e. This is particularly useful
when unwrapping the contents of a request. Aliases can be introduced by:

"Alias" name expression

New abbreviations could also be introduced for collection and enumerated types

TypeDecl "Type" name (<collection-type> | <enum-type>)

33

These abbreviations are currently defined to be global. An alternative would be to also
allow them to be used locally in the context of some class.

These two features are not implemented in the current demonstration.

4.1.6 Simple examples of classes and relations

Class Actor — representing users of the system
inherits base_actor

— we describe base actor class in Section 6.1
jobtitle : text

End

TargetSpecClass File --Targets are described in Section 6.2
action update() property access:accesstype is WRITE

End

Relation ReportsTo
Source Actor manages
Destination Actor reportsto
Attribute signedby employer

End

Relation Owns
Source Actor ownedby
Destination Target owns

End

4.2 Context

The syntax described above can be used to describe the UML model context. Although
such a specification is not required in order to build an access control engine it is
important that such a specification exist because users of the system need to be able to
understand the vocabulary that is used in the formation of the access rule expressions.

In Section 6, we will provide informal descriptions of the classes and objects that are
expected to be part of the context. These will be made more precise with a specific
example application, see Section 7.

5 Policies
In this section, we describe how trust and access control policies are formed.

34

5.1 Combining Policies

Because, in general, there will be multiple parties with a stake in protecting a given set of
resources and information, there is a need for combining multiple policies on a given
target.

These might include:

■ Administrative policy - administrators of the information (who may not necessarily
even be users of the information sharing application) may impose rules

■ Rules-of-the-game policy - what all participants of the information sharing activity
agree to, or sign up for.

■ Creator/owner policy - how the creator of a particular object wants it to be controlled.
■ Intermediate controller policies - There may be intermediate policies inherited

from resources in which an object is embedded. For example, the "owner" of a
directory may impose certain constraints on all subdirectories (even when they are
"owned" by a different user.)

To gain access to a target object, a request must satisfy all of these policies. Access will
be made sufficiently restrictive so that all parties' restrictions hold. (It is possible that
this could limit certain functional objectives of some users. Either they will have to get
other parties to agree to some change, or certain kinds of information sharing will have to
be handled under a different arrangement.)

Each of these policies is currently constructed as conjunctions of disjunctions (a set of
rules containing subrules). Note, however, that rules can be arbitrary boolean
combinations of conditions, so there is no inherent limitation on the expressiveness due to
the current mechanism.

Eventually, we would like to support the selection of policies under special
circumstances. For example, an owner of a directory may invoke a privilege to remove a
subdirectory controlled by a different owner. (See Section 5.6.4.) This is currently not
supported.

5.2 Control and Modification of Policies

Parties may want to change their policies over time. There are a number of issues
associated with this.

The first issue is who gets to modify the access rules and access attributes. This could be
handled by using modifiable OCL rules to define who is allowed to view or modify a
policy. However, if the view/modify rights are modifiable, then an "owner" could set the
modify rules so that the owner is not allowed to make changes. In this case, special
circumstances might have to be invoked for the owner to update the policy. Another
example of a problem with this approach is that not all access attributes should be
modifiable by the creator of an object, e.g., the date of creation. In the current design, we
partially get around some of these difficulties by allowing application level view/modify
rules to take precedence over view/modify rules of a policy. (In fact, in the current

35

implementation of the demonstration, policy view/modify rules are not used.) A different
alternative is to use a more expressive meta-policy mechanism. However, we are
concerned with controlling the complexity of the system and so have not followed this
path.

The second issue deals with propagation of changes. If a policy on a target is imposed on
subtargets, then is a change on the target's policy also propagated to subtargets? If
changes automatically propagate, then the controllers of subtargets may find that the
restrictions they thought they were imposing are no longer adequate, or certain types of
sharing may no longer work properly. Alternatively, if there were no propagation, then
the controller of a higher-level resource would have less discretion on how that resource
is used. Our approach is to provide both kinds of propagation. We use two kinds of
policies, "local" and "inheritable". A local policy applies only to the target on which it is
imposed. An inheritable policy applies to a target and all its subtargets. This two policy
approach adds some complexity, but something like this is needed in order to effectively
handle policies involving multiple authorities.

Note that view restrictions on a policy may not completely hide all information about a
policy, since users can attempt various operations and be allowed or denied. However, it
can hide some information.

5.3 Local and Inheritable Policies

To support multiple control we introduce two different kinds of policies associated with a
target object. The first is the local object policy for that particular target object. The
second is an inheritable policy that applies to a target and all of its "subtargets". The full
inherited policy on a given target then consists of policies from "higher" targets plus an
inheritable policy for the target. The intent is that higher level authorizing agents, such as
owners of higher level directories, can have some say on usage of their resource. Thus,
the policy on a target object is the local policy plus all the inherited policies plus the
target's own inheritable policy. The inherited policies are treated "by reference"; if the
inheritable policy on a target changes, then that affects all the policies of the subtargets of
that target.

The notion of a subtarget for policy inheritance depends on the specifics of the target
class relationships. In the case of a file system the subtargets are the files and directories
that are "contained_in" some directory (and all of the subobjects of the subdirectories).
The inheritable policy for files is equivalent to an additional local policy, as there are no
subtargets for files. To avoid confusion, inheritable policies for files should typically be
avoided. (In the current demonstration implementation, inheritable policies for files are
not allowed.)

5.4 Ease of Use

An important objective of this project is to make setting and modifying access policies
easy for the user.

36

One way we are attempting to achieve this is by using a notion of user default policy (that
can be tailored by the object creator) that defines the initial access policy for newly
created objects. (Note that a user default policy is a meta-policy, because it consists of
rules that determine which access policy should be associated with newly created
objects.) Because the expression language is more expressive than standard access
control mechanisms (for instance, the expression language has the ability to constrain
access in terms of an organizational hierarchy), it is more likely that a default policy can
be specified that will properly represent the desired security constraints.

A user may still need to modify his policy on some target object. Because of OCL's
complexity, we have incorporated an extension of our language that hides some of the
details. In particular, we have provided a generalization of an access control list (ACL)
mechanism. However, if more complex rules are desired, the user will still be able to
specify rules using OCL.

In our current design, each user has a default policy (composed of a set of policy
specification rules) that define which access control policies are assigned to newly
created targets. Both the user's access control policies and the user's policy specification
rules can be modified by the user.

5.5 Policies on Policy Data

In addition to protecting access to targets, we need a way to protect access to security
related information. This occurs in two ways. First, object security policies have view
and modify rights that can be attached to them (Section 5.6.2). Secondly, the certificates
could also be protected. (In the current implementation, there are no view protection
rules on certificates or relationships.)

5.6 Policy Syntax

Policy statements are the rules used in determining whether an operation should be
permitted. Access rules are evaluated to see if access is allowed. That evaluation must
be based on supplied evidence. Trust rules describe the acceptability of the evidence.

We also introduce a syntax for defining the applicability of policies in new object
creation (default policies). In a future version of the system, we may add an additional
class of rules that controls the visibility of non-object information.

PolicyDecl := TrustPolicy | AccessPolicy | DefaultPolicy

All of the trust rules are grouped together as one policy.

5.6.1 Trust policies

TrustPolicy := "Trust" "Policy"
(trustRule ("Response" name)?)*

"End"

37

The trust rules are described in Section 5.8. The named response indicates how trust rule
failures should be handled. We discuss the meaning of the response option in Section
5.9.

5.6.2 Access policies

Access policies contain rules governing access to a target, and constraints on how these
access rules can be viewed and modified.

AccessPolicy := "Policy" <name> ("Response" name)?
(accessRule)*
("modifyRight" OCLexpression)?
("viewRight" OCLexpression)?
("attribute" name securityaction OCLexpression)*

"End"

securityaction := "read" | "write"

The main part of a policy is the set of access rules that it imposes. These are discussed in
the next section. Note that the named response for an access policy indicates how failure
of an access rule should be handled. We discuss the meaning of the response option in
Section 5.9.

The modifyRight attribute indicates who can change the policy. In some sense, this
clause defines who can control, or own, the object. It does not necessarily have to be the
creator of that object. The viewRight attribute is a rule whose evaluation determines
who can view the policy information.

The modifyRight and viewRight on new targets are initially setup using the initial
policy as specified in the default policy specification. Users with modify rights can then
change these rights. (In the current implementation of the demonstration, view and
modify rights are application defined, and not under user control.)

Associated with a target may be certain (security) attributes. These are specified in the
target specification class. Read and write restrictions can be imposed on these attributes.
Some attributes should be set implicitly, e.g., date-of-creation. (There is currently no
specification for how attributes are defined.)

5.6.3 Default policies

When a user creates a target, the user imposes a policy on that target. If the default
policy specification is sufficiently well chosen, then the policy for the newly created
object may require little or no alteration.

In order to keep the default policy specification simple, we define a mechanism that
allows the selection of the appropriate initial policy for a given object. The default policy

38

specification is represented as a set of policy specification rules. The rules indicate
which policy is appropriate for the newly created object.

Syntactically, the default policy specification consists of a list of use-when rules that
specify a policy by name and an OCL expression. If the OCL expression is true when the
target is created, then the named policy is imposed on the target.

Note that there are two default policy specifications; one specifies the local policy on a
newly created target object, and the other specifies the inheritable policy.

These policies are specified with the following syntax.

DefaultPolicySpecification:= "Default" ("Local" | "Inheritable") name?
("use" policyname ("when" OCLexpression)*)*

End

policyname :=name

When evaluating the OCL expression, the system considers the "assign policy" request to
have, as target, the newly created target object. Note that this request is different from
the target creation request, since the original request is carried out on the directory in
which the newly created target resides. (In the current implementation of the
demonstration, the operation and requestor of this assign policy operation are the same as
in the initial creation request.)

Ideally, the "use-when" OCL expressions should define a partition of the targets (for both
local and inheritable policies). However, any ambiguity that is present is resolved by
requiring that that the initial policy of an object is the first policy that makes one of the
"use-when" OCL expressions evaluate to true. In the present design, if no use-when rule
matches, then the user imposes no restriction on the target. An alternative would be to
use an application defined initial policy if there was no match.

Note that policy names and not policies are used in the rules of a default policy
specification. When a new object is created, the policy name is used to obtain the policy
information. This information is copied and associated with the target object. At a later
time, the owner of the target object can then modify the policy on that target object.
(More complex schemes that allow the same policy to be shared by multiple targets are a
possible design alternative, but are not part of the current design.)

When new users are added to the system, they are assigned local and inheritable default
policy specifications (which define the policies that should be attached to newly created
objects of that user). The default policy specifications are determined by the default
policy initialization rules. These rules can be used to define the default policy
specification based on characteristics of the new user.

DefaultPolicylnitialization := "Default"

39

("Local" I"Inheritable") "Initialization"
("use" Default_name ("when" OCLexpression)*)*

End

Default name := name

In the current syntax, the default policy specification indicates whether it is for local or
inheritable policies. Hence, the use of Local and inheritable in the default policy
initialization syntax is redundant, but useful for clarity.

When evaluating the OCL expression, there needs to be a way to refer to the new user
that is being added to the system. The name newuser is used to refer to the object that
represents the new user characteristics. The intent is that certificate information about a
user is included in this object, prior to the choosing the default policy.

Ideally, the "use-when" OCL expressions in the default policy initialization rules should
define a partition of the users (for both local and inheritable default policies). However,
any ambiguity that is present is resolved by requiring that the first initialization rule
whose expression evaluates to true is the one that applies. If no rule matches, then an
error should be reported to the administrator of the system. One possible action is to
abort the new actor creation operation.

In the current implementation of the demonstration, the default specification initialization
is just a single hard-coded rule that applies to all users.

5.6.4 Special circumstances

A useful feature would be to allow different policies to be used in special situations, such
as emergencies. Such policies would allow administrators, or other users, to override the
access rules and then make the necessary changes to an object. Circumstances might
include:

• Special operation status
• Priority override
• Repossession of resource

These types of requests might be handled as a different type of request, or special
circumstances might be an attribute of a standard request.

Control for these special circumstances requires more care than standard access control.
The results of evaluating the trust on certificates may need to produce more information
than typical certificates in order to facilitate the evaluation of a special circumstances
request.

40

Once this information is obtained, a possible solution is to bypass the standard access
control mechanism and evaluate some OCL expression to check that the override is
permitted for that requestor, operation, and target object.

It is possible to have multiple policies to allow different organizations to have different
override constraints. However, a simpler solution may be to have one common policy,
where the organizations can use different criteria for issuing override certificates.

This feature has not been implemented.

5.7 Access Rules

The main part of an access rule is an expression that may either be a boolean OCL
expression or an access control list (ACL). An access rule that is a boolean OCL
expression is a condition that an access request (together with the state of the system)
may or may not satisfy. The expression must evaluate to true in order for access to be
granted. Access control lists are not as expressive as OCL expressions, but are simpler to
specify. An access control list consists of a list of pairs of expressions. The first part of
the pair is a set of subjects (as in OCL a non-set element can be coerced into a singleton
set) and the second part is a set of allowed actions. The rule is true when for some pair
on the list, the requestor is in the set specified by the first part and the action requested is
in the set specified by the second part. (Note that a set in an ACL pair does not have to
be a set of constants; it could be, for instance, a set resulting from navigating a
relationship.)

ACLexpression := ACL (ACLpair)* EndACL
ACLpair := "(" OCLexpression "," OCLexpression w)"

An access rule can be expressed as just one rule or a set of subrules.
A rule that contains "subrules" is just the logical OR of the subrules. This syntax has
been introduced to simplify the presentation in a user interface.

A variation on rules/subrules is also permitted. The language permits a "nested
accretion/subtraction" syntax (similar to the year 1 report method [GG+97]). In this
style, subrules are designated as either allow or deny. Each allow subrule permits
requests which meet the subrule's condition. It is exactly the same as a "subrule". Each
deny subrule removes permission if the subrule's condition is met. So, even if a previous
subrule "grants" permission, a later deny subrule may remove it. A future allow subrule
may then reestablish the permission. Thus, the ordering of the rules is part of the
definition. This style of subrules has the advantage of letting users define permissions by
incremental changes (additions and deletions). It has the disadvantage of being harder to
visually determine when requests are permitted. The design permits, but does not
require, this style. (This feature is not supported in the current implementation.)

For optimization reasons, a rule can contain regular subrules or allow/deny subrules, but
not both. (If there are only subrules, then one can stop evaluating the rule when one of
the subrules becomes true.)

41

accessRule := "Rule" (name)?
(ruleexpression ruleexpression
("SubRule" (name)? ruleexpression)+

j (("Allow" (name)? ruleexpression)
|("Deny" (name)? ruleexpression))+

ruleexpression := OCLexpression -- a general constraint
| ACLexpression -- simpler form for some users

The expression of a rule or subrule can be an expression with an implication, and this can
simplify evaluation.

For example,

((request.action=CREATE) implies "expression")

will succeed when request .action is not a CREATE, and hence "expression" will not
need to be evaluated. (A rule optimizer could be used to speed up evaluations, but this
was not an objective for this effort.)

Subrules are not implemented in the current version of the demonstration.

5.8 Trust Rules

The trust rules are used to determine the trustworthiness of information used by the
policy rules. The most important of these is trustworthiness of the requestor's identity.
These rules are constraints on whether a given piece of information is acceptable, or
possibly, to what extent the information is acceptable.

The results of the trust evaluation can be used to construct an internal form of a certificate
with a "trust level". The trust level can be used in the policy rules. The trust rules
support different trust types for different types of certificates. If no trust type is given for
a particular type of certificate then a default is used. If the application specification
includes a class called certif icateTrust, then this class will be used as the default type
of certificate trust for certificates. If no such class is specified, then integer values will be
assumed.

The system access rules may use the results of the trust evaluation in determining access.
For example, one of the application/system policy rules may insist that the requestor's
certificate trust level be a "minimum" value.

The trust rules contain references to algorithms that will be used to perform the trust rule
evaluation. Three predefined algorithms are available, which return values of 0 or 1 for
failed and succeeded, respectively.

42

■ no check (untrusted)
■ signature validation
■ hierarchical signature validation (check signature and signatures of higher-level

CA's)

Other algorithms may be needed, and these are referred to by name. The implemented
certificate class (or possibly the application) will contain the algorithm.

trustRule := "Rule" (name)?
(Certificate_type | "Default") trustmethod trusttype?

— Certificate_type groups together a number of different elements
— whose certificates are treated the same way

Certificate_type = (identity | relationship name | attribute name)+

trustmethod :=
"checks i gnature"

| "transchecksignature" relname —hierarchical check of signature
j "nocheck"
| String — name of a different algorithm to apply

trusttype := OCLexpression -- type expression

Note that the current style of specification for trust rules does not have the same
flexibility as that of the access rules - there is less specification and more hard coding of
the trust evaluation method.

5.9 Audit and Failure Response Rules

Audit actions can be associated with access policies. The keyword Response followed
by a name indicates the method to invoke for response handling. If no attribute is given,
then the "default" method is invoked. If the rule has a name, then that name is passed as
a parameter.

Since some rule evaluation may cause an error, it is useful to distinguish a rule evaluating
to false from a rule failing to evaluate. An additional parameter is passed indicating the
cause.

Some consideration should be given to the implementation of the response class. If a
user is "denied because of insufficient rights", some information will be conveyed about
the protection rules. A more detailed explanation might be considered an unacceptable
security leak.

A different possible problem is that rule evaluation may be time-consuming or possibly
even nonterminating. A time-out mechanism will be needed, if users are allowed to
submit arbitrarily complex rules. There is no such mechanism in the current
implementation.

43

5.10 Policy Properties

OCL could be used as an assertion language about the properties of policy rules.
For example, one could use OCL to construct a property such as whether a certain class
of users had some particular access right on some class of objects. These properties
could then be checked to make sure the policy had the right characteristics. This is
currently not supported.

There is ongoing work in supporting the analysis of properties specified in OCL [BG98].
(It is also possible that some of the policy analysis could be hard-coded.)

Note that since there is a specific operational mechanism associated with policy rule
evaluation, the semantics for any policy will always be unambiguous (although certain
rule evaluations could result in "errors"). However, a rule analysis might surface some
unintended policy consequence.

5.11 Optimizations

Optimizations could be performed on a set of rules to minimize evaluation time. This is
currently supported in only a limited fashion. Short-circuit evaluation is used for
expression evaluation and for evaluating a set of subrules. (For the intended applications,
accesses will not be frequent, thus this feature is not that important.)

6 System Classes
In this section, we describe the main classes of the language that are used in building the
terms for evaluating access rules. The exact definition of these classes is dependent on
the application. In this section, we describe these classes in a general way that could
apply to most applications. A complete description of the classes for a particular
example is described in Section 7.

Two key types of objects for describing the "system" for access control purposes are
principals, which are authenticated identities, and targets. We will also introduce some
other classes needed for access evaluation.

Although commonly used in security modeling, the term "principal" is generally not used
in object modeling. Therefore, we use the object modeling term "actor". The UML
Language Reference Manual defines an actor as "an idealization of an external person,
process, or thing interacting with a system, subsystem, or class". In general, actors do not
have to be human users in some role, but could be entities such as software applications.
However, in our particular application, they are just humans. (Note that this use of the
word actor is more constrained than that of Adage.)

A user will represent himself to the system using an identity certificate (or possibly some
other authenticating information as well). A user who possesses multiple identity
certificates will therefore be able to take on several identities from the system's point of
view. A user will need to choose the appropriate identity with which to make a given

44

request. For example, a user may have an identity for performing unclassified work, and
a separate identity for performing classified work.

Targets are the objects that a requested operation is supposed to act upon. We focus on
targets that are files and directories.

6.1 Actors

Our scheme does not require a central authority that maintains identity information.
Instead, many certifying authorities potentially have the capability of issuing identity
certificates that contain cryptographically verifiable bindings between a user identity
name and a public key. The access control system can accept and process these identity
certificates (assigning an appropriate level of trust) and process requests from these users.
For instance, a company that hires a new user can issue a new identity certificate for that
user. If the access control system recognizes the validity of the identity certificate, then
when the new user submits a request with the new certificate, the access control system
can create a new internal actor representation with that certificate and then process the
request. An identity certificate may either be issued by the CA of the organization of a
user (if that organization has a CA), or by a third party that the organization signs. The
access control system can have different levels of trust in a certificate depending on its
contents. For instance, the access control system may have higher trust in a certificate
with a certain CA's signature than with another's.

The access control system can maintain an internal representation of identity information
or can compute it as needed. In either case, the identity information of a given actor will
be (possibly conceptually) grouped together as an object. These objects are instances of a
class called the "actor" class. Depending on the inheritance hierarchy, the actor class
may be abstract, and these objects may be instances of a subclass. Attributes of the actor
class will include characteristics such as the name, full namespace (sequence of names),
expiration date, and trust characteristic of basic identity information. The system will
maintain a connection between any internally stored information and the certificates that
supply this information, in case the certificates are later revoked. When designed for
military purposes, the certificates may contain security levels, and these should also be
part of the internal representation of the individual. In a particular application, the system
may also recognize signed certificates that convey additional attributes of an individual.
These dynamic attributes are handled much like relationships (see Section 4.1.4).

Individuals can be grouped together using relationships. For example, one could
introduce a relationship between actors representing some parameterized group. Then the
groups can be built by supplying certificates that attest to all of the relationship instances.
When an access rule is evaluated, it will be based on that evidence. (Note that the
expression language allows other ways to specify sets of individuals.)

The design of the access control system is meant to support revocation requests.
However, this is not implemented in the current demonstration.

45

Each actor has a default security policy that is used to assign a policy to newly created
targets (see Section 5.6.3).

6.1.1 Handling multiple identity certificates

It is possible that a user could have more than one identity certificate. In this case, a
mechanism to tell whether an actor A represents the same user as an actor B may be
useful. One way is to form groups of related identities that designate the same user.

6.1.2 Default values

Not all attributes need to be specified when an actor is created. An object such as
"default actor" could be part of the application specification and used to set defaults for
unassigned attributes in new actors.

6.1.3 Sample actor class

Here is a sample actor class:

Class Actor
full_name : String
certificates : Sequence(Certificate)
secrecy_level : Securitylevelrange
integrity_level : Integritylevelrange
expiration_date : Date
trustlevel : Trust_type

End

6.1.4 Delegation

In the current version of the system, there is no specific support for uniformly expressing
delegation policies (i.e., where one user is permitted to act on behalf of another user).
However, one can express certain terms in access rules such as
(a in request, requestor, delegateof), where delegateof is a relationship between
users.

6.2 Targets

A target is an object to which a user can request access. Like actors, targets can be
refined in a number of ways. For the demonstration system of this project, targets are
directories and files.

Associated with each target is a collection of security characteristics. It is this
information (and not the actual target object) that is used in the security evaluation. This
information is grouped together in the target specification class.

The syntax for introducing Target specification classes is different from other classes.
This is because we may want to be able to specify attributes of target operations, and the
fact that we do not need to apply those operations in an evaluation. See Section 4.1.1.2
for details about the syntax.

46

Here are sample target classes.

TargetSpecClass TargetSpec

secrecy_level : Securitylevelrange — such as hierarchical level
integrity_level : Integritylevelrange
creator : Actor

End

TargetSpecClass File
-- inherits "TargetSpec" (implicit, as TargetSpec is

automatically inherited)
actions read,write,execute

End

TargetSpecClass Directory
actions create,delete

End

Note that certain requests may refer (directly or indirectly) to an executable as well as a
target object. This permits controlling the dynamic creation of new objects that are
appropriate for the intended audience.

6.3 Actions

Actions represent the methods of the target object that are access controlled. In order to
simplify the rules, we may also want to base access decisions on the properties of the
methods of the target class (see Section 4.1.1.2). For example, an action can have a
property that represents the kind of access that is involved, such as whether the access
involves reading, writing, or both reading and writing. In particular, an operation like
"get_creation_date" could then have an accesstype of read. (Adage has a different way
of achieving this using a notion of generic_action.)

6.4 Requests

A "request" object is an abstract representation of a user request. Details of how the
request's information was originally structured in the input, certificates, and signatures
need not be part of the representation.

The primary type of request is a data access request, such as a read or write request. Here
is a sample request class description.

Class AccessRequest
originator : Actor
object : Target -- a "target class"
operation : String — possibly an enumerated type instead of String
parameters: Sequence(String)
— two operations are "builtin" to simplify referring to requests
-- that utilize one or two parameters
Operation parameterl():String --first item on the parameter list
Operation parameter2():String —second item on the parameter list

End

47

Another kind of request is one that sets or retrieves access control information on a target
(such as modifying access rules).

Class InfoRequest
originator : Actor

object : Target
operation : info_operation
parameters: Sequence(String)
Operation parameterl():String —first item on the parameter list
Operation parameter2():String —second item on the parameter list

End

A possible set of info_operations for InfoRequests is: VIEW_LOCALRULES,
VIEW_INHERITABLERULES, MODIFY_LOCALRULES, MODIFY_INHERITABLERULES,
ADD_CERTIFICATE, REVOKE_CERTIFICATE, VIEW_ATTRIBUTE, MODIFY_ATTRIBUTE,

VIEW_METAPOLICY, and MODIFY_METAPOLICY . The last two refer to viewing or
changing the modify and view rights of the policy of some object. (In the current
demonstration only the first four are implemented.)

6.5 Security Class

In some cases, it may be useful to have military security labels.

Rather than splitting the security label characteristics into different classes, as is currently
done in Adage, we group them into one class. With this approach, the methods for
comparing those levels will be contained within the security-level class. Here is an
example where a security-level class contains a hierarchical level and a set of restrictive
categories:

Type hierarchical_level
enum{unclassified,confidential,secret,top_secret}

Type restrictive_categories Set(String)

Class security_level
hier : hierarchical_level
cat : restrictive_categories
shared High : hierarchical_level
shared Low: hierarchical_level
shared NONE,ALL: restrictive_categories
Operator "<" (a:security_level)
Operator "=" (a:security_level)

End

High is equivalent to the highest defined level and similarly for low, which in this case is
top_secret and unclassified, respectively.

(The semantics of the operations would be in the Java executable classes that accompany
the specification.)

48

6.6 Referring to the Objects of the Access Control System

The expressions of the access rules are allowed to contain names that represent objects.
There are a few names that are reserved by the system.

• "request" refers to the object encapsulating the actor, target, and operation of a
request.

• "Master" refers to the target object corresponding to the top-level directory
• "newuser" refers to a newly created user. This name is only used in default

specification initialization rules that decide which default policy specification to
assign to a newly created user.

Additional object names may be introduced by the application developer.

Other object names used in a rule are references to objects that are dynamically created
by the system. If a name does not refer to an existing object (either because it was never
created or was deleted) the value of the name is the null object.

6.7 External representations

Descriptions of the external format of the input requests to the system are hard-coded into
the system. These include requests, certificates, and signature representations.

A somewhat more flexible version of the system could potentially make use of concrete
specifications of these objects. This feature is currently not part of the language.

7 Example

7.1 Informal Explanation

In this example, we describe sample policies for a set of companies that want to
collaborate on a government effort. We assume that the shared information and access
control system will be situated on an unclassified government platform. The government
can choose which companies can participate in the collaboration. The companies will
authorize the individuals that can use this system. The companies will distinguish
between project managers who have top-level control of their project and technical staff
participating on this project.

The information will be organized as a directory structure. Each company will have its
own subdirectory and each of those subdirectories will have subdirectories for different
projects.

The individual role types are as follows:
• Master Authorizer- who has authority over the top level directory

(designated with a dynamic attribute)
• New Project Authorizer - who has the ability to designate new projects and their

managers (designated with a dynamic attribute)

49

Project Manager - who has control over a subdirectory
(designated implicitly, the owner of a project level directory)
Technical Staff - who has control over a subdirectory of a project directory
(designated by member_of_project)
Credential Authority - who can assign relationships for some company
Identity Authority - who can issue identity certificates
(designated as part of the trust rules)
Owner - users that control particular targets
(designated as an attribute of the object)

7.2 Specification

Classes:

Class Actor
name:String
trustlevel:Integer
company:Company
-- subordinate_of uses the works_for relationship to see
-- if there is a chain of works_for conditions between the actor
-- object and the passed parameter
Operation subordinatesf(person:Actor):Boolean
-- the actorfor method converts the name of a user into an object
— if there is no match then a NULL value is returned.
ClassOperation actorfor(name:String):Actor
-- shortcuts for readability: check if requestor has authorization
Operation hasMasterAuthorization():Boolean
Operation isNewProjectAuthorizer():Boolean

End

Class Project
name:String

End

Class Company
name:String

End

Class Collaboration
name:String

End

TargetSpecClass FileOrDirectory
name:String -- name of directory
owner:String -- initially set by creation
Action read,delete

End

TargetSpecClass Directory
Inherits FileOrDirectory

Action createdir Property isCreate:Boolean is true
Action createfile Property isCreate:Boolean is true

50

-- possibly useful to directly refer to the company directory
companydir:Directory

End

TargetSpecClass File
Inherits FileOrDirectory

Action write
End

— Note in the demonstration
the actions are READ,DELETE,WRITE for Files and

READDIR,DELETEDIR,CREATEDIR,CREATEFILE for Directories
— (Shared action names are not implemented)

Relationships:

Dynamic:
— the ReportsTo relation indicates the staff hierarchy
— It may be useful in configuring lower level directories
Relation ReportsTo

Source Actor manages
Destination Actor reportsto

End

-- the Member_of_project relation indicates that individual has
— authority over part of a project directory
Relation Member_of_project

Source Actor has_member
Destination Project member

End

— the Project_manager indicates that an individual manages some
— project.
Relation Project_manager

Source Actor manages
Destination Project manager

End

-- the Corporate_participant relation indicates that a company can
— participate in the collaboration
Relation Corporate_participant

Source Company allows_corporation
Destination Collaboration participates_in

End

— Belongs_to indicates that an individual is part of some company
Relation Belongs_to

Source Actor
Destination Company belongs_to

End

Builtin:

— Consists_of describes the files and directories belonging to

51

-- some directory-

Relation Consists_of
Source Directory parent multiplicity 0..1
Destination FileOrDirectory children

End

Dynamic attributes:
-- NewProjectAuthorizer is the credential that a member of a company
-- must have to set up a new project and assign its project manager
Attribute NewProjectAuthorizer

Source Actor
Destination Boolean
Default false

End

— Master Authorization is the privilege that is necessary to do any
-- operation on a top level directory, other then setting up a new
-- project

Attribute MasterAuthorization
Source Actor
Destination Boolean
Default false

End

Context:

-- The request object is a representation of individual requests to
-- the server. It can include a parameter that is used to specify
— names of new files or directories

Class Request
requestor : Fullname
target : Fullname
operation : Name
parameterlist : Sequence(String)

End

-- Note that in the current implementation, Fullnames are implemented
--as names

-- Object values that are accessible as part of the context:
Actors, files

-- The actions are already defined as part of the target specification
-- classes.

Trust Rules:

52

To establish trust, proper signatures are required from an authorized company agent for
both identity and relationship information. In this example, the trust attribute is 0 or 1 if
not a member of an authorized company and >1 otherwise. Certificates with trust level 0
or 1 should simply be discarded as part of the trust evaluation mechanism, and so this
value is really not needed as part of a certificate. However, for the purposes of showing
how this could be used in access decisions, we refer to the value in our example rules.

We call this algorithm for establishing trust "invalid_unauthorized_or_authorized".
It is expressed as:

Rule trust_evaluation Default
"invalid_unauthorized_or_authorized" integer

Default Policy Specification
— Default policy specifications are used to set the initial policies
-- of a newly created object.
-- This specification describes the default policies initially
— provided by the system for new users. (In the current demonstration
-- all new users must start with the same default policy. There is no
— default policy initialization specification.)

Default Local
use localmaster when (request.target=Master)
use localsecondlevel when (request.target.parent=Master)
use lowerlevel when true -- in any other case

End

Default Inheritable
use localmaster when (request.target=Master)
use inheritablesecondlevel when (request.target.parent=Master)
use inheritablelowerlevel when true -- in any other case

End

Policies for Master

This is the local policy of the top-level directory. An actor with new project
authorization privilege can create or delete a directory. All other actions require master
authorization.

Policy Local localmaster
Rule

if (request.requestor.hasMasterAuthorization())
then true

else if request.requestor.isNewProjectAuthorizer()
then (request.operation in Set{createdir,deletedir})

and (request.parameterl() = request.requestor.company.name)
else

false
endif endif

End

53

Policy Inheritable inheritablemaster
Rule
— note trustlevel is assigned to 0 or 1 if not a member of a currently
--authorized company or improper certificate. Trust level>l if
—certificate OK and authorized company
request.requestor.trustlevel>l

End

Policies for 2ndLevel directories

Policy Local localsecondlevel
— to delete or create a directory at this level must have
— company authorization or be the manager of the project
-- Others can read (note that the master policy requires that

they be from one of the collaborating companies)

Rule
if ((request.operation=createdir) or

(request.operation=deletedir)) then
(request.requestor.manages.name = request.parameterl()

else
(request.operation=read)

endif
End

Policy Inheritable inheritablesecondlevel
Rule
(not (request.target.company in request.requestor.belongs_to)) implies

(request.operation=read)
End

Policies for lower level directories

Policy Local locallowerlevel
--Default Inheritable policy for most newly created objects requires --
— that the requestor is the owner, or access is limited to
—read (for file or directory)
Rule

(request.requestor <> request.target.owner) implies
(request.operation=read)

End

Policy Inheritable inheritablelowerlevel
-- no inheritable constraints

End

8 Description of Demonstration Software
In the preceding sections, we have described a language for specifying access control
policies. This section presents a short description of the software that was built to
demonstrate the access control methodology. We have built a prototype information
sharing application that controls access to a repository of target files and directories. The

54

demonstration uses certificates for user identification, and simulations of certificates for
other information such as relationships. It allows the user to create files and directories
with specified user default policies, and to view and modify rules on target objects.
Details of the installation and operation of this demonstration are in the Software User
Manual deliverable [FR99].

The prototype is intended only to demonstrate the usability and flexibility of the access
control mechanism, and does not provide the full security infrastructure needed for an
information sharing product.

8.1 Overview

The top-level architecture consists of an information server and a user interface for
interacting with the information server. The information server includes an access
control engine for evaluating the security rules and an object manager for handling files
and directories. User interfaces include support for retrieving and storing data, as well as
modifying access policies on targets and default policies of users.

Usei Interfaces Information Server

Access Control
Engine

Get and Put
Information

Object Manager Modify Access
Policy

Figure 1: Components of Information Sharing Application

Important supporting components are certificate generation and evaluation. Our access
control demonstration is a Web-based mechanism for distributed information sharing.
The information resides on a Web server and permits users to access such information
using a Web browser such as Netscape. Users can submit requests to view or modify
information or rules, and access is protected by the policy-based access control
mechanism.

The user can

1. Navigate the directories containing shared information
2. Read, write, create, and delete files
3. Create new subdirectories
4. View and modify rules on a target file or directory
5. View and modify the default policies that he assigns to newly created targets

55

There is also a (non-access controlled) interface to view and modify relationship; this
interface is provided as a way to simulate changes in relationship information.

8.2 Client GUI web pages

The client interacts with the Web server via HTML web pages, augmented by JavaScript
functions and served dynamically from the Web server. The user interface presents an
integrated view of the target hierarchy within a Web-browser environment. A directory
reader page displays the choices available from a given directory: there is a list of
subdirectories and files, and choices of operations to perform on each. All operations are
access-controlled by a Java servlet in the server intercepting the HTTP request running
on the server side. When a client browser initiates a session with the server, it sends
along a certificate to authenticate the client's identity. This identity is then used to
process access requests made during this session.

The user can choose a file or directory (including the current directory) on which to
perform an operation, and then pick an operation to perform. Currently supported
operations on directories are to read the directory, create a file within the directory, create
a directory within the directory, delete a directory within the directory, and view or
modify policies on that directory. Operations supported on files are to read a file, write to
the file, view or modify policies on the file, or delete the file. Once the user has selected
the target and operation, the user presses a submit button to send the request to the server
for evaluation and execution.

8.2.1 Reading, writing, and creating files

Requests to read, write, or create files are all access controlled; successful requests return
pages to perform the requested functions.

8.2.2 Viewing and modifying rules on a target

A user can request to view or modify rules on a target. The user can then choose which
of the policies imposed on the target to view or modify. These policies are the local and
inheritable policies of the target itself, along with the policies inherited from the
directories containing the target. Whether this request is successful depends on the view
and modify rights of the policy on which the request is made. The current
implementation supports viewing and modifying complex rules (without subrules or
allow/deny rules) and ACL rules.

8.2.3 Viewing and modifying relationships

This page allows a user to view and modify relationships of the system. The page has
three lists, the first of which contains the relationships of the system. When one of them
is selected, the second list displays the names of the start objects of the selected
relationship. When one of the start objects is chosen, then the third list displays the end
objects related to the selected start object. The present page also simulates the action of
adding and revoking relationship instances based on relationship certificates.

The interface does not currently display or modify dynamic attributes.

56

PART III: Java Enhancements and Tools

9 Polyj
Java [Sun95a] is a type-safe, object-oriented programming language that is used
increasingly widely for mobile applications, e.g., for so-called applets that can be used to
provide active content on web pages. Java achieves code mobility by using a machine-
independent target architecture, the Java Virtual Machine (JVM) [LY96]. Java provides
some degree of safety for mobile applications, in part because Java bytecodes can be
verified statically, preventing violations of type safety that might access private
information. Java also enforces stricter run-time checking than languages like C and
C++. Because of the widespread interest in Java, its similarity to C and C++, and its
industrial support, many organizations are making Java their language of choice.

One problem with Java, as currently defined, is that certain coding errors are detected
only when a program is run, not when it is compiled. This problem causes Java programs
to be less reliable than could be achieved with additional compile-time checking; that is,
it brings coding errors to the attention of the people who use code rather than the people
who developed that code. One particular failing in Java, which unduly limits the amount
of compile-time checking that can be done, lies in its lack of support for generic code. In
Java, it is possible to define a new type, such as a set of integers, but it is not possible to
define a generic abstraction for sets, in which the elements of a particular set are
homogeneous, but the element type can differ from one set to another. Current Java
programs must adapt to the lack of genericity by using run-time type discrimination,
which is error-prone, awkward for the programmer, and relatively expensive.

To address this problem, we have extended Java with parametric polymorphism, a
mechanism for writing generic interfaces and implementations. The resulting language,
called PolyJ [MBL97], is supported by a portable compiler, which translates PolyJ
programs into standard Java programs, which can be compiled by any standard Java
compiler.

An explicit goal of our work was to be very conservative. We extended Java by adapting
an existing, working mechanism with as few changes as possible. We supported the Java
philosophy of providing separate compilation with complete intermodule type checking,
which also seemed important for pragmatic reasons. We used the Theta mechanism
[LCD+94, DGLM95] as the basis of our language design, because Theta has important
similarities to Java. Like Java, it uses declared rather than structural subtyping, and it
supports complete intermodule type checking. We rejected the C++ template mechanism
[Sto87] and the Modula-3 [Nel91] generic module mechanism because they require that a
generic module must be type checked separately for every distinct use. Furthermore, the
most natural implementation of these mechanisms duplicates the code for different actual
parameters, even when the code is almost identical.

57

9.1 Illustration of Unreliability in Java

The following is an example of Java code that compiles without any error reports, but
that produces an error at run-time.

import java.util.Enumeration;
import java.util.Vector;

public class sample {
public static void main(String[] args) {

Vector v = new Vector();
v.addElement("abc");
v.addElement(v);
for (Enumeration e = v.elements(); e.hasMoreElements();)

System.out.println(v.nextElement()) ;
}

}

When run, the compiled code produces one line of output followed by 6,325 lines of error
messages:

abc
j ava.lang.StackOverflowError

at j ava.lang.StringBuffer.append(StringBuf fer.j ava)
at j ava.util.Vector.toString(Vector.j ava)
at java.util.Vector.toString(Vector.Java)

at java.util.Vector.toString(Vector.Java)
at java.io.PrintStream.print(PrintStream.Java)
at j ava.io.PrintStream.println(PrintStream.j ava)
at sample.main(sample.java:9)

Clearly, such behavior is unacceptable. Developers should be able to detect and correct
such defects before shipping applications to users. Users should be able to depend on
receiving reliable code and should not be subjected to strange run-time failures.

The underlying problem with this code is that Java provides no good way for the
programmer to express the intent that the vector v contains only strings and not other
types of objects. Hence the statement

v.addElement(v) ;
is not detected as an error during compilation, and the statement

System.out.println(v.nextElement());
produces an error at run-time when it attempts to print the value of the second element in
v. Even if the programmer rewrites the second statement as

System.out.println((String)v.nextElement());

to cast the elements of v to strings before printing them, the program still compiles
without any errors being reported and produces the following run-time error:
abc
java.lang.ClassCastException:

at sample.main(sample.java:9)
Although this error message may be less objectionable than before, the code is no more
reliable, and the user is not likely to be any happier with the result.

58

9.2 Improved Reliability in PolyJ

PolyJ enables programmers to annotate their code so that errors of the kind just illustrated
can be detected at run-time. For example, a PolyJ programmer can rewrite the above
code as follows to indicate that all elements in the vector v are strings.

import polyj.util.Enumeration;
import polyj.util.Vector;

public class sample {
public static void main(String[] args) {

Vector[String] v = new Vector[String]();
v.addElement("abc");
v.addElement(v);
for (Enumeration[String] e = v.elements(); e.hasMoreElements();)

System.out.println(v.nextElement());
}

}

Here, vector [string] is an instantiation of a parameterized type vector [T] , and
Enumeration [string] is an instantiation of a parameterized interface Enumeration [T].
With the additional information provided by type parameters, the PolyJ compiler is able
to detect the error in the program and report

sample.pj:7: No matching method:
addElement(polyj.util.Vectorfjava.lang.String]) found on class
polyj.util.Vector[j ava.lang.String]

to the programmer of sample, who can repair the error before the user of sample ever
runs the code.

The source code that defines the PolyJ vector abstraction is obtained by changing the
first few lines of the Java vector abstraction from

public class Vector implements Cloneable {
protected Object[] elementData;
protected int elementCount;

to

public class Vector[E]
where E { boolean equals (E e) ; String toStringO; }

implements Cloneable {
protected E[] elementData;
protected int elementCount;

and then systematically replacing all other occurrences of object in the source code by E

and all occurrences of Enumeration in the source code by Enumeration [E]. The
identifier E is a type parameter, which can be instantiated by types such as string that
have methods satisfying the where clause in the definition of Vector.

59

The information in the where clause serves to isolate the implementation of a
parameterized definition from its uses (i.e., instantiations). Thus, the correctness of an
instantiation of Vector can be checked without having access to a class that implements
vector; in fact, there could be many such classes. Within such a class, the only
operations of the parameter type that may be used are the methods and constructors listed
in the where clause for that parameter. Furthermore, the class must use the routines in
accordance with the signature information given in the where clause. The compiler
enforces these restrictions when it compiles the class; the checking is done just once, no
matter how many times the class is instantiated.

A legal instantiation sets up a binding between a method or constructor of the actual type,
and the corresponding where-routine, the code actually called at run-time. Since an
instantiation is legal only if it provides the needed routines, we can be sure they will be
available to the code when it runs. Thus, the where clauses permit separate compilation
of parameterized implementations and their uses, which is impossible in C++ and Modula
3.

9.3 Implementation Strategy

We implemented PolyJ using a source-to-source translation, which transforms PolyJ
programs into legal Java programs that can be compiled by any standard Java compiler.
Although more efficient run-time code could be produced by adding new byte codes to
the Java Virtual Machine, we chose not to do so, thereby enabling PolyJ programs to be
run on any Java Virtual Machine.

The compiler is built as an extension to the guavac compiler developed by David
Engberg [Eng96]. It is written in C++, which also means that it runs efficiently on
virtually all platforms.

There are two reasonable ways to implement parameterized types in Java without
extending the virtual machine. The most obvious implementation is to treat each
instantiation of a parameterized class or interface as producing a separate class or
interface. Each instantiation of a parameterized class would have its own ".class" file
that must be separately loaded into the interpreter and verified for correctness. In
essence, the parameterized code is recompiled for each distinct set of parameters. This
technique is similar to the template implementation used by most C++ compilers, which
leads to substantial code blowup. It differs from the C++ approach in that the where
clauses guarantee successful recompilation.

We employed an alternative strategy, which produces code that is generic across all
instantiations: the compiler generates bytecodes for parameterized classes as though all
parameters are of class object. When compiling code that uses a parameterized class,
the compiler generates run-time casts as appropriate. Because the compiler has type
checked the code, all the run-time casts necessarily succeed, but the performance is the
same as for old-style Java code that manipulates variables of type obj ect and performs
explicit casts.

60

In this scheme, invocation of where-routines is complicated. Each object of a
parameterized class contains a pointer to a separate object that bundles up the appropriate
where-routines for the instantiation, presenting them as methods. The compiler
translates a where-routine invocation to an invocation of the corresponding method of
this where-routine object. The where-routine object is installed in the object of a
parameterized class by passing it as a hidden, extra argument to class constructors. The
advantage of this technique over the previous one is that only the code of these where-
routine objects is duplicated for each instantiation; most of the code of a parameterized
class is shared for all instantiations.

9.4 Comparison with Other Approaches

PolyJ differs from other approaches to providing parametric polymorphism in several
respects. Unlike some approaches, it uses the constraint mechanism of where clauses,
which is important because it provides flexibility when composing a program. It also'
allows basic types like int to be used as parameter types. Unlike some other approaches
instantiation types are first-class types that may be used wherever a type may be used,
particularly, in run-time casts and instanceof.

PolyJ uses where clauses rather than subtype constraints as is done in several other
approaches (e.g., Pizza [ORW97] and GJ [BOSW98]) to providing parametric
parameterization. The problem with subtype relationships is that Java, unlike most of the
object-oriented languages with parametric polymorphism, requires explicit declaration of
subtype relationships. Thus, in order to create an instantiation type such as Set [Node],
there must be an explicitly declared subtype relationship between Node and a special
parameterized constraint interface.

There are two problems with this requirement. First, Java is supposed to support
development with extensive libraries and separate compilation. It is both limiting and
contrary to the spirit of Java to require that a programmer wishing to use Set [Node] have
access to the source code for Node. Furthermore, there would be an explosion of
parameterized constraint interfaces, and many classes will have to declare that they
implement a long list of them. The explosion would be particularly bad because Java
supports overloading, and different generic classes would require different versions of the
overloaded method. These different versions would lead to different constraint interfaces
that differ only in how they are overloaded.

10 Enhanced javadoc Utility

We produced a prototype of Percolator, a tool that generates html documentation files for
Java programs. Percolator is similar in function to the Sun javadoc utility. Like javadoc,
Percolator extracts documentation from stylized comments embedded in source code.
Unlike javadoc, it checks the extracted documentation for consistency with the source
code. Checks currently supported by Percolator include:

61

• Parameter and exception consistency: any parameter or exception documented in an
gparam or ©exception section must correspond to a parameter or exception in the
method definition.

• Returns consistency: the documentation for a method that does not return a value may
not have an ©returns section.

• Completeness: all parameters, exceptions, and returned values must be documented in
an @param, ©exception, or ©returns section (unless the -mustdocument COmmand-
line option is used).

Percolator also recognizes the following additional documentation sections, which are
motivated by the design of Larch interface specification languages [GH+92].

• ©requires: documents requirements that must be satisfied by the caller before
invoking a method.

• ©effects: documents the effects of executing method.

• ©modif ies: lists the objects whose values may be changed by invoking the method.

The following additional annotations and checks would be useful in Percolator, but have
not been implemented.

• support and checking for PolyJ parameterized types,

• "maybe" type annotations and checks to prevent run-time errors that occur when
dereferencing a null pointer, and

• preconditions for native methods and checks to provide lightweight security
validation.

62

PART IV: Enforcing Safety Properties

11 Enforcing Safety Properties
People often want to run programs without allowing them total control over their system.
Users should not have to worry about buggy or malicious programs disrupting other
programs, corrupting files on their disk, or compromising their privacy.

Modern operating systems provide some support by protecting process address spaces
and setting access permissions on resources, but are limited by how much information
they have about the acceptable behavior for a specific application. For example, behavior
that is normal for a network backup utility would be considered suspicious for a web
applet. Although a general-purpose operating system cannot be expected to know the
limits on acceptable behavior for an arbitrary program, an application writer can. Even a
naive end-user has a reasonable notion of what different types of programs should not be
expected to do.

We have developed a system, called Naccio [Evans99, ET99], that enables system
administrators or end-users to impose general safety policies on the programs they intend
to run. With the aid of Naccio, administrators or users can specify limits on the
acceptable behaviors of programs as safety policies, which consist of collections of safety
properties. Naccio tools transform programs to produce trusted programs that satisfy
specified safety policies.

Examples of the kinds of safety properties that Naccio is designed to support include:

• Restricting what files or directories may be read and written.

• Requiring that any temporary files created by the program be removed before
execution terminates.

• Placing a limit on the total amount of disk space that may be used by files created by
the program.

• Prohibiting the application from communicating with certain IP addresses.

• Prohibiting the application from communicating with other hosts after sensitive files
have been read.

Limiting the fraction of available network bandwidth the application may consume
during any five-second period.

63

11.1 Overview of Naccio

Suppose, for example, one wishes to enforce a safety policy that places a limit on the
total number of bytes applications may write to files. To do this, the system needs to
maintain a state variable that keeps track of the total number of bytes written so far.
Furthermore, it needs to check before every operation that writes to a file that the limit
will not be exceeded. One way to enforce a safety property like this would be to rewrite
the platform libraries to maintain the necessary state and do the required checking. This
would require access to the source code of the platform libraries, and we would need to
rewrite them each time we wanted to enforce a different safety policy.

Instead, we could write wrapper functions that perform the necessary checks and then call
the original system function. To enforce the policy, we would modify the target program
to call the wrapper functions instead of calling the protected system calls directly.
Though wrappers are a reasonable implementation technique, they are not appropriate for
describing safety policies, since creating or understanding them requires intimate
knowledge of the underlying system. To implement the write limit policy, the author of
the safety policy would need to identify and understand every system function that may
write to a file. For even a simple platform like the Java API, this involves knowing about
more than a dozen different methods. Changing the safety policy would require editing
the wrappers, and there would be no way to reuse a safety policy across multiple
platforms.

The Naccio solution is to express safety policies at a more abstract level and to provide
tools that generate and use the appropriate wrappers to enforce a safety policy on a
particular platform. We express safety policies as constraints on resources and
characterize system calls by how they affect those resources.

Figure 2 shows the Naccio system architecture, which incorporates a policy generator
and an application transformer. -A policy author runs the policy generator to produce
what the application transformer uses to enforce the policy on a particular program.
Since policy generation is a relatively infrequent task, Naccio trades off execution time
for the policy generator to make application transformation fast and to reduce the run-
time overhead required to enforce the policy. Once a policy has been generated, it can be
reused to constrain the operation of multiple applications.

The policy generator uses the following inputs to produce a policy-enforcing platform
library, a version of the platform library that includes the wrappers necessary to enforce
the policy. It also produces a policy description file that contains the transformation rules
required to invoke the wrappers and enforce the policy.

• Resource descriptions (abstract descriptions of system resources). Naccio provides a
set of standard resource descriptions. Policy authors can alter this set, provided they
make corresponding alterations in the platform interface. However, a wide variety of
safety policies can be expressed using Naccio's standard resource descriptions.

64

The safety policy (a description of the constraints to be enforced on the manipulation
of abstract resources). Policy authors (i.e., system administrators or individual users)
write these in terms of the abstract resource descriptions.

The platform interface (a description of the particular system platform that describes
the effect of system calls on abstract resources). As for resource descriptions, Naccio
provides standard platform interfaces (e.g., for Java API classes and Win32 Dynamic
Link Libraries). Policy authors do not need to know the contents of the platform
interface.

The platform library (the unaltered platform library, for example, the Java API
classes or Win32 Dynamic Link Libraries).

Resources
Safety policy

Platform interface
Platform library

'•''": -\ /'Generator^ W i
*' -...: <\L:*Z '• *•• ■-•■JJ

Policy-enforcing
platform library

Policy Description File

Program
^#A|)ph.caiiony '-■■
j|-Ä;t'ränsfbrHe/'i^

Version of program that
• uses policy-enforcing platform
• satisfies low-level safety

Figure 2: Naccio Architecture

The application transformer is run when a user or system administrator elects to enforce
a particular policy on an application. The transformer applies the transformations in a
policy description file to the target program to produce a version of the program that is
guaranteed to satisfy the safety policy. It does this by replacing system calls in the
program with calls of the policy-enforcing library. It also ensures that the resulting
program satisfies the low-level code safety properties necessary to prevent malicious
programs from circumventing the high-level code safety mechanisms. Standard

65

techniques for low-level code safety, such as bytecode verification or software fault
isolation, are used for this purpose.

The application transformer needs to be run only once for each program and safety
policy. Afterwards, the resulting program can be executed normally.

In the following sections, we illustrate the form of the inputs provided to the policy
generator. The operation of the policy generator and the application transformer are
described in [Evans99], [ET99], and [Twy99].

11.2 Describing Resources

Resource descriptions provide a way to identify resources and the ways in which they are
manipulated. Examples of resources include a file system, a network connection, a
system property, and a thread. Resource descriptions are platform independent, but may
be used to describe platform specific resources such as the Windows registry.

Resources in Naccio are described by listing their operations and observers. Resource
operations have no implementation; they are merely hooks for use in describing safety
policies. The meaning of a resource operation is indicated by its associated
documentation. The essential promise is that a transformed program will invoke the
related resource operation with the correct arguments whenever the documented event
would occur. It is up to the policy generator and platform interface to ensure that this is
the case.

Following is an excerpt from an RFileSystem resource description that describes a
resource corresponding to the file system. The global modifier indicates that only one
RFileSystem instance exists for an execution. Resources declared without a global
modifier are associated with a particular run-time object. Most of the RFileSystem
operations take an RFile parameter, a resource object that identifies a particular file.

global resource RFileSystem
operations

initialize ()

"Called when execution starts."
terminate ()

"Called just before execution ends."

openRead (file: RFile)

"Called before file is opened for reading."
openCreate (file: RFile)

"Called before a new file is created for writing."
openOverwrite (file: RFile)

"Called before an existing file is opened for writing."
openAppend (file: RFile)

"Called before an existing file is opened for appending."
close (file: RFile)

"Called before file is closed."

66

preWrite (file: RFile, n: int)
"Called before up to n bytes are written to file."

postWrite (file: RFile, n: int)
"Called after exactly n bytes were written to file."

preRead (file: RFile, n: int)
"Called before up to n bytes are read from file."

postRead (file: RFile, n: int)
"Called after exactly n bytes were read from file."

delete (file: RFile)
"Called before file is deleted."

observeExists (file: RFile)
"Called before revealing if file exists."

observeWriteable (file: RFile)
"Called before revealing if file is writeable."

Resource manipulations may be split into more than one resource operation. For example
reading a file is divided into preRead and postRead operations. This division allows
more precise safety policies to be expressed, since some information, in this case the
exact number of bytes read, may not be available until after the platform call is made.
Pre-operations allow necessary safety checks to be performed before the action takes
place, while post-operations can be used to maintain state and perform additional checks
after the action has been completed and more information is available.

Resource descriptions also define observers, functions that reveal some aspect of the state
of a resource, but do not modify that state. Naccio provides observers so that safety
properties can determine information about a resource in a platform independent way.

11.3 Expressing Safety Policies

The class of safety policies that can be expressed using Naccio is limited by the resource
operations defined in the resource descriptions. Safety policies can constrain how these
resources may be manipulated, but only in terms of information available through
resources. For example, Naccio cannot express any liveness properties (i.e., properties
that constrain what must happen at some time in the future).

A safety policy is described by listing safety properties and their parameters. Safety
policies can be combined to define a new policy. The simplest way to combine safety
policies is to create a policy that includes all safety properties of both policies. Other
combination mechanisms designed to support easily modifying existing policies by
strengthening or weakening particular constraints are currently under investigation.

Limitwrite is a sample safety policy that combines two safety properties. The
NoOverwrite property disallows replacing or altering the contents of any existing file,
and the LimitBytesWritten(ioooooo) property places a million-byte limit on the
amount of data that may be written to files. These safety properties are defined in a

67

Standard properties library. By itself, Limitwrite would not be a good policy to use for
an untrusted application, because it constrains neither what files the application reads nor
how the application uses the network. In practice, this policy would be combined with
policies that place constraints on other resources.

policy LimitWrite
NoOverwrite, LimitBytesWritten (1000000)

property NoOverwrite

check RFileSystem.openWrite (file: RFile),
RFileSystem.openAppend (file: RFile),
RFileSystem.delete (file: RFile)

violation ("Attempt to overwrite file: " + file.getName ());

property LimitBytesWritten (limit: int)

requires TrackTotalBytesWritten;

check RFileSystem.preWrite (file: RFile, n: int)

if (bytes_written+ n > limit)

violation ("Attempt to write more than " + limit +
" bytes. Already written " + bytes_written +
" bytes, writing " + n + " more to " +
file.getName () + ".");

Stateblock TrackTotalBytesWritten

addstate RFileSystem.bytes_written: int = 0;

postcode RFileSystem.postWrite (file: RFile, n: int)
bytes_written += n;

A safety property consists of one or more check clauses that identify resource operations
and provide action code for enforcing the property. For example, the check clause of the
NoOverwrite property identifies the two RFileSystem resource operations associated
with opening an existing file for writing (openWrite and openAppend) and the operation
associated with deleting a file (delete). The action code simply invokes the violation
command, which will produce a dialog box that alerts the user to the safety violation and
provides an option to terminate the program.

The LimitBytesWritten property illustrates how a more complicated safety property is
defined. It takes an integer limit parameter, and constrains the total number of bytes
that may be written by the application to the value of that parameter. When
LimitBytesWritten is instantiated in a safety policy, limit is given a value. To
implement the write limit, we need to keep track of how many bytes are written. This is
done by the TrackTotalBytesWritten state maintainer that is included by the requires
clause. It adds a state variable to the RFileSystem resource, and provides a postcode
action to the RFileSystem.postWrite operation. The body of this postcode action will
be executed after all checking code associated with the write operation.

68

Hence, when the LimitBytesWritten property check action compares the value of
bytes_written to limit, the value of bytes_written will not have been incremented
before the comparison. It is advisable to keep the state maintenance and property
checking code separate, since many safety properties may require the same state.

11.4 Describing Platform Interfaces

In order to enforce a safety policy, the appropriate resource operations must be called
when the corresponding resource is manipulated. The platform interface describes how
system calls affect resources.

For each platform, we must determine an appropriate level for the platform interface.
That is, we must decide which library calls are described by the platform interface, and
which will be considered part of the application and transformed by the application
transformer. The level of the platform interface limits the resource manipulations that
can be identified and, hence, the class of safety policies that can be expressed. For
example, if we place the platform interface at the level of system calls, we cannot express
safety policies that constrain lower-level resources such as memory or processor usage.

For Naccio/JavaVM, we are limited by our ability to deal easily with code for native
methods. At a minimum, this means that the platform interface must describe all Java
API native methods that affect resources. We could stop there and simply consider the
rest of the Java API as part of the application that needs to be processed by the
application transformer. When a library native method is called, the transformer could
replace the call with a call to a wrapped version of the method that performs the
necessary safety checking.

This would be unsatisfactory, however, since it allows for no distinctions regarding how
the native method is called. For example, the AWT method that loads a font would call
the same wrapper file open method as user code that opens a Fileinputstream. To
handle checking correctly, we would need to resort to using run-time mechanisms (e.g.,
stack introspection [WF98]) to identify and distinguish trusted system code. Instead, it
seems clear that the platform interface for the JavaVM platform should describe all Java
API methods in terms of how they affect resources. Internal API calls within API
methods need not incur additional safety checks since the platform interface describes all
relevant resource manipulations at the level of the API method. This eliminates the need
to make any run-time distinctions between unprivileged code and privileged system code.

For each Java API method or constructor that affects a system resource, the platform
interface must provide a wrapper that invokes the appropriate resource operations. In the
following excerpt from the platform interface for the j ava. io. FileOutputstream
class, the requiredif RFile, RFiieSystem statement indicates that constructors and
methods in this class need be wrapped only if the RFile and RFiieSystem resources
require checking. The RFiieMap helper class keeps a mapping between Java files and the
corresponding RFile objects. The rf ile state variable keeps track of the RFile object
associated With a FileOutputstream.

69

wrapper java.io.FileOutputStream requiredif RFile, RFileSystem {

requires j ava. i o. RF i 1 eMap ;

State RFile rfile;

helper Static RFile doOpen (Java.io.File file) {
RFile trfile;
trfile = RFileMap.lookupAdd (file);
if (file.exists ()) RFileSystem.openOverwrite (trfile);

else RFileSystem.openCreate (trfile);
return trfile;

}

wrapper FileOutputStream (Java.io.File file) {
RFile trfile;
trfile = doOpen (file);
#;
rfile = trfile;

}

wrapper void write (int b) {
if (rfile != null) RFileSystem.preWrite (rfile, 1);

#;
if (rfile !=null) RFileSystem.postWrite (rfile, 1);

}

Consider the wrapper for the write method. If the rfile object associated with this
FileOutputStream represents a file, the wrapper calls the RFileSystem.preWrite and
RFileSystem.postwrite resource operations. If the safety policy constrains the write
operation, the relevant checks will be done in these operations. If there is a safety
violation, it will be detected in the preWrite resource operation, and the user will have
the option to terminate execution before the FileOutputStream write method is called.
The # symbol indicates the point at which the original FileOutputStream.write
method will be invoked.

70

PART V: Information Flow

12 Information Flow

The growing use of mobile code in downloaded applications and servlets has resulted in
an increased interest in robust mechanisms for ensuring privacy and secrecy. A crucial
problem is that information must be shared with downloaded code without allowing that
code to leak the information. Information flow control is intended to address these
privacy and secrecy concerns. However, most information flow models are too
restrictive to be widely used. During this project, we have developed a promising new
model, the IFlow decentralized label model for information flow [ML97, ML98,
Myers99a, Myers99b].

Our goal is to allow a node to share information with a downloaded applet or uploaded
servlet, yet prevent the mobile code from leaking the information. Additionally, it should
be possible to prevent the applet or servlet from leaking private information to other
programs running on the same node. Our approach is to check information flow by a
straightforward static analysis of annotated program code.

The IFlow model makes a good basis for information flow control because it improves on
earlier models in several ways:

• IFlow allows individual principals to attach flow policies to pieces of data. The flow
policies of all principals are reflected in the label of the data, and the system
guarantees that all policies are obeyed simultaneously. Therefore, IFlow works even
when principals do not trust one another.

• IFlow allows individual principals to declassify data by modifying their own flow
policies. Principals cannot perform arbitrary, unauthorized declassification, because
the flow policies of all other principals are still maintained. Declassification permits
applications running with sufficient authority (i.e., to act for a principal) to remove
restrictions when appropriate; for example, an application might determine that the
amount of information being leaked is inconsequential. Previous work on
information flow did not allow any declassification within the model.

• IFlow supports efficient static analysis of information flow, which is required to
prevent leaking information through implicit flows and to provide practical fine-
grained control over information flow [DD77].

• Static checking is accomplished without imposing restrictions on the model that make
it difficult or awkward to use. EFlow supports label polymorphism and safe run-time
label checking. It supports label inference, which reduces the burden on
programmers to add static information flow annotations to a program. Both label
checking and label inference can be performed easily and efficiently.

71

• IFlow has a formal semantics that allows a precise characterization of which
relabelings are legal. This definition lets us prove that the rules for static checking
are both sound and complete: the rules allow only safe relabelings, and they allow all
safe relabelings.

• IFlow allows a richer set of safe relabelings than do previous label models [Den76,
MMN90], which do not exploit information about relationships between different
principals.

• IFlow can be applied in dual form to yield decentralized integrity policies.

72

PART VI: Conclusions and Recommendations

13 Results

13.1 Access Control

13.1.1 Current Results

We have developed a policy language and mechanism that provide security support for
information sharing between organizations. For instance, such a mechanism could be
used to support the secure sharing of files, or Web pages, between organizations
cooperating on some project. We have built a file sharing demonstration to illustrate this
method.

Our approach enables different organizations and users to set appropriate fine-grained
access controls with minimal user intervention. The basis of the approach is to use an
access control language that can express access rules in terms of the relationships and
attributes of users and objects in a general way. This permits the construction of policies
that are appropriate to a wide class of target objects. When such policies are used as
defaults for newly created objects, they are more likely to capture the desired security
restrictions, and hence require less user modification.

As the basis for forming access rules, we used a variation on the object oriented
constraint language, OCL. The intent was to permit access control to be expressed in
terms of natural classes of users, target objects, and supporting concepts. Ideally, we
could have just used OCL without modification, in order to conform to some object
oriented standard. However, the OCL syntax is awkward in some places (such as
expressing the containment of an element in a set), so we found it desirable to add some
extensions to the language. One language feature of OCL that we kept, which perhaps
we should have altered, is the use of the dot notation to indicate navigation both to
attributes and to relations. In our access control language, they are conceptually quite
different, and it might have been clearer if we had used two different syntactic constructs.

Because of the complexity of the OCL-like expression language, we added a simple
front-end language based on access control lists. This may make it easier for end-users to
make small adjustments to a policy. In other specific information sharing applications,
there may be other simple front-end languages, or interfaces, that would also be useful.

Our system is designed to support sharing information in a way that permits
organizations/users to allocate some of their resources to another user. The principal
example is a directory owner who allows another user to create a subdirectory within his
directory. The second user has control of the subdirectory, but the directory owner can
still impose some access constraints on the subdirectory. To permit this scenario, we
provide a way for a party to impose local policies on a directory (which only apply to that
directory) and inheritable policies that also apply to all target objects in the directory.

73

Using this mechanism, multiple parties with a controlling interest in a given target can
simultaneously impose access control policies on that target.

The specific classes that should be utilized in the specification and evaluation of the
security rules depend on the needs of the participants of the information sharing system.
For example, the best notion of a security integrity level may depend on the kind of data
that needs to be protected. Hence, our system has been designed so that when it is
installed, it can easily be configured to handle the appropriate classes.

13.1.2 Future Directions

We see several further directions for research. It would be interesting to perform field
trials of our access control methodology to gauge the usability of the system. We may
find that making some further syntactic modifications would enhance usability. We may
also find that further front-end languages or interfaces might be useful.

Another direction would be to investigate more flexible mechanisms for management of
meta-policy, such as modification rights on policies.

We could generalize the policy space from a tree hierarchy (policies on files and
directories) to a space with more complex links than containment. Then the notion of
policy inheritance might better reflect other useful notions of multiple controlling
authorities.

13.2 Java Tools - PolyJ

13.2.1 Current Results

PolyJ is an extension of the Java programming language that provides notations for
parameterized types. The PolyJ compiler can detect errors that would cause ordinary
Java programs to fail at run-time. PolyJ also simplifies programming by eliminating the
need for many explicit typecasts.

The PolyJ compiler was used to teach an undergraduate course in software engineering
at MJT to over 100 students in both the spring and fall terms of 1998. The PolyJ
compiler is freely available over the Internet at http://www.pmg.lcs.mit.edu/polyj.
Development of PolyJ was supported jointly by this contract and by instructional funds
from MJT.

Documentation for PolyJ includes a paper about its design [MBL97], Chapters 6 and 10
in a revised edition of Abstraction and Specification by Barbara Liskov and John Guttag
[LG97], and a manual and man page included in the PolyJ distribution.

13.2.2 Future Directions

Sun Microsystems has submitted a Java Specification Request, JSR-000014, that
proposes extending the Java programming language with generic types. This JSR lists

74

PolyJ as one of three competing proposals for this extension, the other two being GJ
[BOSW98] and Nextgen [CS98].

PolyJ meets all of the constraints and goals in the JSR. In addition, it supports the use of
primitive types as type arguments, a feature that the JSR describes as "nice," but "not...
a goal of the design." We think it should be a goal of the design, so that Java
programmers will no longer have to cast an int to an int in Java to use it as an element
of a vector. Furthermore, PolyJ's use of where clauses instead of interfaces as a means
of constraining type arguments provides better support than GJ for program development.
Programmers wanting to use a parameterized type may have access only to the object
code, and not to the source code, for classes providing the arguments of that type. This
presents no problem in PolyJ. However, GJ requires such access unless the classes used
for arguments were written in a way that anticipated this use (i.e., they were specified as
implementing the appropriate interfaces).

Because we believe PolyJ to be superior to GJ, the most important future direction for
work on PolyJ is to try to influence the Java standardization effort to adopt its approach
rather than GJ's. Unfortunately, GJ appears to have the inside track since it is being
proposed by Sun itself.

13.3 Java Tools - Enhanced javadoc Utility

13.3.1 Current Results

We have developed a prototype, percolator, as an improved javadoc utility. Like
javadoc, percolator extracts documentation from stylized comments embedded in
source code. Unlike javadoc, percolator checks the extracted documentation for
consistency with the source code. Hence, its use leads to documentation that is more
accurate.

13.3.2 Future Directions

A tool based on percolator would be a useful addition to the collection of tools
currently available for developing Java programs. One particularly useful enhancement
to percolator would be support for PolyJ documentation, i.e., for checking that the
documentation of parameterized types is consistent with the source code.

13.4 Enforcing Safety Properties

13.4.1 Current Results

With Naccio, it is possible to define a large and useful class of safety policies in a general
and platform-independent way, and to enforce those policies on executions without an
unreasonable performance penalty.

Naccio defines a safety policy by associating checking code with abstract resource
manipulations. The policy definition mechanisms are general enough to describe a large

75

class of safety policies that comprises most useful policies. A standard resource library
enables the creation of policies that are portable across Naccio implementations for
different platforms. Naccio's policy definition mechanisms have considerable
advantages over other alternatives. By describing policies in terms of abstract resource
manipulations, they isolate policy authors from platform details. It is not necessary to
know a particular platform API to produce or understand a safety policy. Once a policy
has been developed, it can be reused on all platforms for which Naccio implementations
are available.

Naccio's architecture for enforcing policies is based on transforming programs to insert
checking code. This architecture replaces resource-manipulating calls with wrappers that
perform checks before and after those calls. Low-level code safety mechanisms prevent
program code from tampering with or circumventing the checking code. The
enforcement architecture has two advantages over common alternatives. Because it
modifies platform library object code directly, it does not require the availability of
source code. Second, since it analyzes the policy statically and only introduces wrappers
that are necessary for checking, the overhead required to enforce a policy is directly
related to the amount of checking it does. If a policy does not constrain a particular
resource manipulation, there is no checking overhead associated with that resource
manipulation. The main drawback to the enforcement architecture is that it depends on a
large trusted computing base. This increases the likelihood that there are vulnerabilities
that can be exploited and makes assurance difficult.

We have developed two prototype Naccio implementations that enforce policies on
JavaVM classes and Win32 executables. Naccio/JavaVM is a complete implementation.
Naccio/Win32 does not yet provide a complete platform interface or implement the
protective transformations necessary for low-level code safety. Although the prototype
implementations are not ready for industrial deployment, they provide a proof-of-concept
for the Naccio architecture.

Naccio represents one point in the design space for code safety systems. It is well suited
to typical Internet users at small and medium size companies today and for the near
future. It supports enforcement of a large class of policies with low preparation costs and
with run-time overhead that is minimal for simple policies and that scales with the
complexity of the policy. The current design is not well suited to high-security
environments because its large trusted computing base makes assurance difficult.

13.4.2 Future Directions
For a code safety system to be trustworthy, there must be some assurance that it provides
the expected security. As discussed in the previous section, one of the security
vulnerabilities of Naccio is that it depends on a large trusted computing base. An
industrial implementation should attempt to reduce the size of the trusted computing base
and validate its most critical parts.

76

The prototype implementations are designed with ease of implementation as a priority.
Although performance results indicate that the prototypes perform acceptably in most
situations, industrial implementations could make substantial performance improvements.
[Evans99b] discusses some straightforward ways to improve the performance of the
policy compiler, program transformer, and executing application.

The prototypes do not include any tools to help policy authors write, understand and test
policies. A better environment for developing policies is essential if policy authoring is
to be accessible to non-experts. It would be useful to have tools that can automatically
analyze policies and answer questions about what one policy allows that a different
policy does not, or whether a policy always disallows a certain sequence of system calls.
Suitable test cases can help detect simple errors in a policy, but they do not provide
sufficient assurance that the policy means what its author intends.

Although the focus of our work on Naccio has been on code safety, Naccio has a number
of other possible applications. Its mechanisms provide a way to alter or monitor the
behavior of executions in ways that could be useful in addressing many other problems.

Naccio can be useful in debugging programs. For example, policies could be used to
confirm that the number of bytes sent over the network is a function of the number of
bytes read from files, or that every open file is closed before execution terminates, or that
all files created in temporary directories are deleted. Policies used for debugging can be
more precise than safety policies enforced on arbitrary programs since the programmers
know a great deal about the expected behavior of their programs. For example, policy
violations can be used to direct the programmer to examine assumptions about the
behavior of the code more carefully, even when that code is behaving correctly.

Naccio policies can record program activity in logs file, which can be used for
performance profiling and program analysis. Logging done at the system level would be
useful for intrusion detection.

By altering platform interfaces, it is possible to change program behavior in ways that are
not necessarily security related. For example, a policy can modify the behavior of a
program to delay and split network transmissions to conform to a specified bandwidth
constraint. Another policy could save backup versions of all files before they are
overwritten.

By providing better ways to define safety policies along with efficient and convenient
mechanisms for enforcing policies, we hope the situations in which code safety policies
are used will be expanded. Currently, code safety is usually considered only for
untrusted mobile code. A satisfactory code safety system would be useful in protecting
users from bugs in applications from trustworthy sources as well. As the precision of
safety policies increases and the costs of enforcement are reduced, policies can be
enforced in more situations with more pervasive benefits.

77

13.5 Information Flow

13.5.1 Current Work

We have developed a decentralized model for information flow control, which can be
used to address privacy and secrecy concerns in mobile code (such as downloaded Java
applets). The model allows individual principals to attach flow policies to their data, to
declassify data, and to act on behalf of other principals. The model enables efficient
static checking of actual program code, which ensures that all principals' flow policies
are respected (without leaking information, as do many run-time checks). [ML97,

ML98].

A subsequent DARPA Contract (F30602-98-1-0237) has supported the development of
JFlow, an extension of the Java programming language, together with a compiler for
JFlow. Together, the language and the compiler provide an implementation of the IFlow
model and methods developed under this contract. [Meyers99a, Meyers99b]

13.5.2 Future Directions

There are several directions in which to extend this work on information flow. One
obviously important direction is to continue to make IFlow a more practical model for
developing applications. JPlow addresses many of the limitations of earlier information
flow systems that have prevented their use for the development of reasonable
applications; however, more experience (e.g., with implementations such as JFlow) is
needed to better understand the practical applications of this approach.

Our work has assumed an entirely trusted execution environment. The IFlow model does
not work well in large, networked systems in which different principals may have
different levels of trust in the various hosts in the network. One simple technique for
dealing with distrusted nodes is to transmit opaque receipts or tokens for the data.
Another approach is for a third party to provide a trusted host to get around the impasse
of mutually distrusted hosts. It would be interesting to investigate a distributed
computational environment in which secure computation is made transparent through the
automatic application of these techniques.

Our work shows how to control several kinds of information flow channels better,
including channels through storage, implicit flows, and run-time security checks.
However, it does not treat covert channels that arise from timing channels and from the
timing of asynchronous communication between threads. Supporting multi-threaded
applications would make our work more widely applicable. Although there has been
some work on analyzing these channels through static analysis, current techniques are
overly restrictive. One central difficulty is the need to distinguish between locally and
globally visible operations within a multi-threaded program. Current multi-threaded
programming environments have tended to minimize this distinction, but without it, static
analysis will not be a reasonably precise tool for controlling information flow. An altered

78

programming model may be possible in which enough information is available about
inter-thread communication to permit precise analysis.

14 Technology Transfer Recommendations

• Advocate the PolyJ approach to polymorphism in the JSR-000014 Java
standardization effort.

• Install and demonstrate Naccio at Air Force Research Lab - Rome site.
• Incorporate techniques used in the access control method into other policy related

efforts.

79

References
[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy, "Decentralized Trust
Management", Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp.
164-173, 1996.

[BG98] Mark Bickford and David Guaspari, Lightweight Analysis of UML, ORA Tech
Report TM98-98-0036, November 1998.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler,
"Making the future safe for the past: adding genericity to the Java programming
language", Proceedings of the 13th ACM Conference on Object Oriented Programming,
Systems and Applications (OOPSLA 98), Vancouver, B.C., October 1998.

[CS98] Robert Cartwright and Guy Steele, "Compatible Genericity with Run-time
Types for the Java(tm) Programming Language", Proceedings of the 13th ACM
Conference on Object Oriented Programming, Systems and Applications (OOPSLA 98),
Vancouver, B.C., October 1998.

[DD77] Dorothy E. Denning and Peter J. Denning, "Certification of programs for secure
information flow", Communications of the ACM, 20(7), pp. 504-513, 1977.

[DGLM95] M. Day, R. Gruber, B. Liskov, and A. C. Myers, "Subtypes vs. where
clauses: Constraining parametric polymorphism", OOPSLA '95 Conference Proceedings,
ACM Press, pp. 156-158, October 1995.

[Den76] Dorothy E. Denning, "A lattice model of secure information flow",
Communications of the ACM, 19(5), pp. 236-243, 1976.

[Eng96] David Engberg, guavac, a free compiler for the Java language, Effective Edge
Solutions, San Francisco, 1996. ftp://ftp.vggdrasil.com/pub/dist/devel/compilers/guavac.

[Evans96] David Evans, LCLint User's Guide, Version 2.2, MIT Laboratory for
Computer Science, August 1996.

[Evans99] David Evans, Policy-Directed Code Safety, PhD Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
September 1999.

[ET99] David Evans and Andrew Twyman, "Flexible Policy-Directed Code Safety",
Proceedings of the 1999 IEEE Symposium on Security and Privacy, Oakland, California,
9-12 May 1999.

[FS97] Martin Fowler with Kendall Scott, UML Distilled - Applying the Standard
Object Modeling Language, 1997.

80

[FR99] Francis Fung and David Rosenthal, Software User Manual for the Access
Control Object Language Demonstration, Odyssey Research Associates, ORA-TM-99-
0009, 1999.

[GG+97] Stephen Garland, David Guaspari, et al., Year 1 Report - Security Engineering
for High Assurance Policy-Based Applications, Odyssey Research Associates, MIT,
ORA-TM-97-0040, 1997.

[GH+92] John V. Guttag and James J. Horning, editors, with Stephen J. Garland, Kevin
D. Jones, Andres Modet, and Jeannette M. Wing, Larch: Language and Tools for Formal
Specification, Springer-Verlag, 1992.

[LCD+94] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and A. C.
Myers, Theta Reference Manual, Programming Methodology Group Memo 88, MIT
Laboratory for Computer Science, Cambridge, MA, February 1994.

[LG97] Barbara Liskov and John Guttag, Abstraction and Specification in Program
Development, draft second edition, 1997.

[LY96] T. Lindholm and F. Yellin, The Java Virtual Machine, Addison-Wesley,
Englewood Cliffs, NJ, May 1996.

[Myers99a] Andrew C. Myers, "JFlow: Practical Static Information Flow Control",
Proceedings of the 26th ACM Symposium on Principles of Programming Language
(POPL '99), San Antonio, Texas, January 1999.

[Myers99b] Andrew C. Myers, Mostly-Static Decentralized Information Flow Control,
PhD Thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, February 1999.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov, "Parameterized
Types for Java", ACM POPL'97, Paris, France, January 1997.

[ML97] Andrew C. Myers and Barbara Liskov, "A decentralized model for information
flow control", Proceedings of the 16th ACM Symposium on Operating System Principles,
Saint-Malo, France, 5-8 October 1997.

[ML98] Andrew C. Myers and Barbara Liskov, "Complete, safe information flow with
decentralized labels", Proceedings of the 1998 IEEE Symposium on Security and Privacy,
Oakland, CA, 3-6 May 1998.

[MMN90] Catherine J. McCollum, Judith R. Messing, and LouAnna Notargiacomo,
"Beyond the pale of MAC and DAC—defining new forms of access control",
Proceedings of the IEEE Symposium on Security and Privacy, pp. 190-200, 1990.

81

[Nel91] Greg Nelson (editor), Systems Programming with Modula-3, Prentice-Hall,
1991.

[OCL] OMG Unified Modeling Language Specification (draft), chapter 6: Object
Constraint Language, Version 1.3al, January 1999.

[ORW97] Martin Odersky, Enno Runne, Philip Wadler, Two Ways to Bake Your Pizza -
Translating Parameterised Types into Java, Technical report CIS-97-016, School of
Computer and Information Science, University of South Australia, 1997.

[Rat97a] Rational Software, et al., Object Constraint Language Specification, version
1.1, September 1997.

[Rat97b] Rational Software, et al., UML Notation Guide, version 1.1, September 1997.

[Rat97c] Rational Software, et al., UML Semantics, version 1.1, September 1997.

[RW97a] Martin Roscheisen and Terry Winograd, "A Network-Centric Design for
Relationship-based Security and Access Control", Journal of Computer Security, 1997,
Stanford (from Web http://miosa.standford.edu/rmr/JoSec.html).

[RW97b] Martin Roscheisen and Terry Winograd, The FIRM Framework for
Interoperable Rights Management, Draft, Stanford, April 1997.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, 1999.

[Sto87] B. Stoustrup, The C++ Programming Language, Addison-Wesley, 1987.

[Sun95a] Sun Microsystems, Java Language Specification, version 1.0 beta edition,
October 1995.

[Sun95b] Sun Microsystems, The Java Virtual Machine Specification, release 1.0 beta
edition, August 1995.

[Twy99] Andrew Twyman, Flexible Code Safety for Win32, MEng Thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
May 1999.

[WF98] Dan S. Wallach and Edward W. Feiten, "Understanding Java Stack Inspection",
Proceedings of the 1998 IEEE Symposium on Security and Privacy, Oakland, CA, 3-6
May 1998.

[ZBCS97] Mary Ellen Zurko, Travis Broughton, Greg Carpenter, and Rich Simon, An
Architecture for Distributed Authorization, The Open Group Research Institute, Oct.
1997.

82

MIT Web pages

Polyj http://www.pmg.lcs.mit.edu/polyj/

Code safety http://naccio.lcs.mit.edu/

»D.S. GOVERNMENT PRINTING OFFICE: 2002/710-038/10266

83

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

